CSE 547/STAT 548

Non-linear dimension reduction: an introduction

Marina Meilă

Department of Statistics University of Washington

January 2022

Outline

What is manifold learning good for?

Manifolds, Coordinate Charts and Smooth Embeddings

- Son-linear dimension reduction algorithms
 - Local PCA
 - PCA, Kernel PCA, MDS recap
 - Principal Curves and Surfaces (PCS)
 - Embedding algorithms

Metric preserving manifold learning – Riemannian manifolds basics

- Metric Manifold Learning Intuition
- Mathematical defihitons
- Estimating the Riemannian metric
- Choice of neighborhood radius
 - What graph? Radius-neighbors vs. k nearest-neighbors
 - What neighborhood radius/kernel bandwidth?

Who needs manifold learning?

• What is PCA good for?

Spectra of galaxies measured by the Sloan Digital Sky Survey (SDSS)

• Preprocessed by Jacob VanderPlas and Grace Telford • n = 675,000 spectra $\times D = 3750$ dimensions

embedding by James McQueen

Molecular configurations

When to do (non-linear) dimension reduction

- n = 698 gray images of faces in D = 64 × 64 dimensions
- head moves up/down and right/left
- With only two degrees of freedom, the faces define a 2D manifold in the space of all 64 × 64 gray images

Manifold. Mathematical definitions

Definition 1 (Smooth Manifold (?))

- A *d*-dimensional manifold \mathcal{M} is a topological (Hausdorff) space such that every point has a neighborhood homeomorphic to an open subset of \mathbb{R}^d .
- A coordinate chart (U, x) of manifold M is an open set U ⊂ M together with a homeomorphism x : U → V of U onto an open subset V ⊂ ℝ^d = {(x¹, ..., x^d) ∈ ℝ^d}.
- A C^{∞} -atlas \mathcal{A} is a collection of charts, $\mathcal{A} \equiv \bigcup_{\alpha \in I} \{ (U_{\alpha}, x_{\alpha}) \}$ where I is an index set, such that $\mathcal{M} = \bigcup_{\alpha \in I} U_{\alpha}$ and for any $\alpha, \beta \in I$ the corresponding transition map $x_{\beta} \circ x_{\alpha}^{-1} : x_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \mathbb{R}^{d}$ is continuously differentiable any number of times.
- Notation: $p \in U \longrightarrow x(p) = (x^1(p), ..., x^d(p)).$
- The mappings {x} are not uniquely defined. This is a problem for comparing results of manifold estimation algorithms
- Generally, a manifold needs more than one chart. This is not a severe problem, and can be circumvented as we will see next. For simplicity, we will talk only about a single chart from now on.

Intrinsic dimension. Tangent subspace

- d is called intrinsic dimension of \mathcal{M}
- If the original data $p \in \mathbb{R}^D$, call D the ambient dimension.
- Denote by φ : V ⊆ ℝ^d → U ⊆ M the inverse of x. A smooth curve γ on M is defined as the image by φ of a smooth curve γ̃ in V. A smooth curve admits a tangent at every interior point.
- The tangent subspace of \mathcal{M} at $p \in \mathcal{M}$, denoted $\mathcal{T}_p \mathcal{M}$ is defined as the set of all tangents at p to smooth curves on \mathcal{M} that pass through point p.

$$\dim \mathcal{T}_p \mathcal{M} = d$$

- If $f : \mathcal{M} \to \mathbb{R}$ is a scalar function on \mathcal{M} , then its gradient at p, denoted $\nabla f(p)$, is a vector in $\mathcal{T}_p \mathcal{M}$.
- exterior derivative
- geodesic distance

Tangents to curves - detail

The Chain Rule
$$f = h \circ g \Leftrightarrow f(x) = h(g(x))$$

where $f : (-1,1) \to U \subset \mathbb{R}^{D}, g : (-1,1) \to V$
 $V \subset \mathbb{R}^{d}, h : V \to U$
 $\frac{d}{dt}f = dh\frac{d}{dt}g$ (1)
Where $\frac{d}{dt}f \in \mathbb{R}^{D}, \frac{d}{dt}g \in \mathbb{R}^{d}, dh = [\frac{\partial h^{i}}{\partial x^{j}}]_{i=1:D}^{j=1:d}$ is
the Jacobian of h

- Smooth curve on \mathcal{M} : $\gamma = \phi \circ \bar{\gamma}$, $\gamma(t) = \phi(\bar{\gamma}^1(t), \dots \bar{\gamma}^d(t))$
- Hence $\frac{d\gamma}{dt} = d\phi \cdot \frac{d\bar{\gamma}}{dt}$

An example I

- \mathcal{M} is unit sphere in \mathbb{R}^3 , coordinates x, y, z
- U is top patch of \mathcal{M} . How to map U to $V \subset \mathbb{R}^2$?
 - ()We find the inverse mapping $\phi: V \to U$
 - **2** Let V be a the interior of a circle, coordinates (x^1, x^2) , point $(0, 0, 1) \in U$ maps to $(0.0) \in V$.
 - **(a)** Let $r^2 = (x^1)^2 + (x^2)^2$, and map it to the arc distance from (0, 0, 1) to p = (x, y, z). Then

$$x = x^{1} \sin r$$

$$y = x^{2} \sin r$$

$$z = 1 - \cos r$$

4 Let's compute the derivatives (by chain rule)

$$\frac{\partial r}{\partial x^1} = \frac{x^1}{r} \qquad \qquad \frac{\partial x}{\partial x^1} = \sin r + \frac{(x^1)^2}{r} \cos r$$

$$\frac{\partial r}{\partial x^2} = \frac{x^2}{r} \qquad \qquad \frac{\partial x}{\partial x^2} = \frac{x^1 x^2}{r} \cos r$$

$$\frac{\partial z}{\partial x^1} = \frac{x^1}{r} \sin r \qquad \qquad \frac{\partial y}{\partial x^1} = \frac{x^1 x^2}{r} \cos r$$

$$\frac{\partial z}{\partial x^2} = \frac{x^2}{r} \sin r \qquad \qquad \frac{\partial y}{\partial x^2} = \sin r + \frac{(x^2)^2}{r} \cos r$$

An example II

- Now let $\bar{\gamma}: (-\epsilon, \epsilon) \to V$ be the curve $\bar{\gamma}(t) = [t \ t]^T$. Hence $\frac{d\bar{\gamma}}{dt} = [1 \ 1]^T$
- The tangent vector in p = (0, 0, 1) is $\frac{d\gamma}{dt}(0, 0) = d\phi \frac{d\bar{\gamma}}{dt}$ with coordinates

$$\frac{d\gamma}{dt}(0,0) = \begin{bmatrix} \sin r + \frac{(x^{1})^{2} + x^{1}x^{2}}{r} \cos r \\ \sin r + \frac{(x^{2})^{2} + x^{1}x^{2}}{r} \cos r \\ \sin r \frac{x^{1} + x^{2}}{r} \end{bmatrix}$$

(2)

Examples of manifolds and coordinate charts

Not manifolds

- dimension not constant
- unions of manifolds that intersect
- sharp corners (non-smooth)
- many/most neural network embeddings
- manifolds can have border

Embeddings

- One can circumvent using multiple charts by mapping the data into m > d dimensions.
- Let \mathcal{M}, \mathcal{N} be two manifolds, and $f : \mathcal{M} \to \mathcal{N}$ be a C^{∞} (i.e *smooth*) map between them. Then, at each point $p \in \mathcal{M}$, the Jacobian df_p of f at p defines a linear mapping between $T_p\mathcal{M}$, and the tangent subspace to \mathcal{N} at f(p) $T_{f(p)}\mathcal{N}$.

Definition 2 (Rank of a Smooth Map)

A smooth map $f : \mathcal{M} \to \mathcal{N}$ has rank k if the Jacobian $df_p : T_p\mathcal{M} \to T_{f(p)}\mathcal{N}$ of the map has rank k for all points $p \in \mathcal{M}$. Then we write rank (f) = k.

Definition 3 (Embedding)

Let \mathcal{M} and \mathcal{N} be smooth manifolds and let $f : \mathcal{M} \to \mathcal{N}$ be a smooth injective map, that is $rank(f) = dim(\mathcal{M})$, then f is called an immersion. If \mathcal{M} is homeomorphic to its image under f, then f is an embedding of \mathcal{M} into \mathcal{N} .

- Whitney's Embedding Theorem (?) states that any *d*-dimensional smooth manifold can be embedded into \mathbb{R}^{2d} .
- Hence, if $d \ll D$, very significant dimension reductions can be achieved with a single map $f: \mathcal{M} \to \mathbb{R}^m$.
- Manifold learning algorithms aim to construct maps f like the above from finite data sampled from \mathcal{M} .

Non-linear dimension reduction: Three principles

- Local (weighted) PCA (IPCA)
- Principal Curves and Surfaces (PCS)
- Embedding algorithms (Diffusion Maps/Laplacian Eigenmaps, Isomap, LTSA, MVU, Hessian Eigenmaps,...)
- Other, heuristic] t-SNE, UMAP, LLE

In all cases, given $\mathcal{D} = \{\xi_1, \ldots, \xi_m\} \subset \mathcal{M}$, want to "recover" \mathcal{M} of arbitrary shape. What makes the problem hard?

- Intrinsic dimension d
 - must be estimated (we assume we know it)
 - sample complexity is exponential in d NONPARAMETRIC
- non-uniform sampling
- volume of \mathcal{M} (we assume volume finite; larger volume requires more samples)
- injectivity radius/reach of \mathcal{M}
- curvature
- ESSENTIAL smoothness parameter: the neighborhood radius (see next)

Neighborhood graphs

- All ML algorithms start with a neighborhood graph over the data points
- In the radius-neighbor graph, the neighbors of ξ_i are the points within distance r from ξ_i, i.e. in the ball B_r(ξ_i).
- In the k-nearest-neighbor (k-nn) graph, they are the k nearest-neighbors of ξ_i .
- neigh_i denotes the neighbors of ξ_i , and $k_i = |\operatorname{neigh}_i|$.
- $\Xi_i = [\xi_{i'}]^{i' \in \mathsf{neigh}_i} \in \mathbb{R}^{D \times k_i}$ contains the coordinates of ξ_i 's neighbors
- k-nn graph has many computational advantages
 - constant degree k (or k-1)
 - connected for any $\dot{k} > 1$
 - more software available
 - but much more difficult to use for consistent estimation of manifolds (see later, and)

Local PCA

Idea Approximate $\mathcal M$ with tangent subspaces at a finite number of data points

- **9** Pick a point $\xi_i \in \mathcal{D}$
- **2** Find neigh_i, perform PCA on neigh_i $\cup \{\xi_i\}$ and obtain (affine) subspace with basis $T_i \in \mathbb{R}^{D \times d}$
- Solution Represent $\xi_{i'} \in \operatorname{neigh}_i$ by $y_i = \operatorname{Proj}_{T_i} \xi_{i'}$

$$y_{i'} = T_i^T (\xi_{i'} - \xi_i) \quad \text{new coordinates of } \xi_{i'} \text{ in } \mathcal{T}_{\xi_i} \mathcal{M}$$
(3)

Repeat for a sample of n' < n data points

Local PCA

- For n, n' sufficiently large, \mathcal{M} can be approximated with arbitrary accuracy
- So, are we done? Some issues with IPCA
- Point ξ_i may be represented in multiple T_i 's (minor)
- New coordinates y_i are relative to local T_i
- Fine for local operations like regression
- $\bullet\,$ Cumbersome for larger scale operations like following a curve on ${\cal M}$

PCA in two ways

Principal Component Analysis

- Data matrix $X = (D \times n)$ each column a data vector
- XX^T is covariance matrix (unnormalized; must be centered!)
- SVD(X, d) = $U\Sigma V^T$ keep only d principal eigenvectors, and d largest e-values $U = d \times D$ basis vectors
- $Y = U^T X = \Sigma V^T = d \times n$ low dimensional representation of data
- $UU^T X$ = reconstruction of X (D dimensional, rank d)
- Encoding a new $x \in \mathbb{R}^D$: $y = U^T x$

PCA Dual algorithm

- more efficient when $D \gg n$
- Compute $X^T X = K$ Gram matrix (or kernel matrix)
- EIG(K, d) = $V\Sigma^2 V^T$ keep only d principal eigenvectors, and largest d e-values
- $Y = U^{\top} X = \Sigma V^{\top} = d \times n$ low dimensional representation of data (U not computed unless we want to reconstruct x data)

Kernel PCA

• Kernel PCA

- when data x mapped to high-dimensional feature space $\Phi(X)$
- $\langle \Phi(x), \Phi(x') \rangle = \kappa(x, x')$ (positive definite) kernel
- Gram matrix (Kernel matrix) $K \leftarrow [\kappa(x_i, x_j)]_{i,j=1}^n$
- $\kappa(x, x')$ is tractable to compute (Ex: Gaussian kernel $\kappa(x, x') = \exp(-||x - x'||^2/h^2)$)
- Dual PCA $\Rightarrow Y = \Sigma V^T = d \times n$ (tractable!)
- What if data in Φ space not centered?
- The Centering Matrix H

$$H = I - \frac{1}{n} \mathbf{1}_{n \times n}$$

- Substracts the mean of a vector
- Properties of H: H symmetric, H² = H, H1 = 0, Ha = a_c (centered vector), HX^T = X_c^T (centers all columns of X^T)

Manifold Learning Intro

-Non-linear dimension reduction algorithms


```
PCA, Kernel PCA, MDS recap
```


• Substructs the mean of a vector • Properties of H: H symmetric, $H^2 = H$, H1 = 0, $Ha = a_c$ (centered vector), $HX^T = X_c^T$ (centers all columns of X^T)

Exercise 1

Properties of the centering matrix *H* Let $a \in \mathbb{R}^n$ be a vector, μ_a the mean of the elements of a,

$$a_c = a - \mu_a \mathbf{1}_{[1]} \text{ the centered vector } a. \tag{4}$$

Prove that **a**. *H* is symmetric, and idempotent $H^2 = H$. **b**. H1 = 0 **c**. $Ha = a_c$ **d**. Show that *H* has an eigenvalue $\sigma_1 = 0$. What is the e-vector for σ_1 ? **e**. The eigenvalues of *H* are $\sigma_1 = 0$, $\sigma_{2:n} = 1$. Characterize the e-vector space for $\sigma_{2:n}$. **f**. Let $X \in \mathbb{R}^{n \times D}$ a matrix with rows equal to data points in *D* dimensions. Prove that $X_c = HX$ is a matrix whose rows (as data points) have 0 mean. **g**. Let $K = XX^T$ be a kernel matrix, and $K_c = X_cX_c^T$. Prove that $K_c = HKH$.

Multi-dimensional scaling (MDS)

• Problem Given matrix of (squared) distances $D \in \mathbb{R}^{n \times n}$, find a set of *n* points in *d* dimensions $Y = d \times n$ so that

$$D_{\mathbf{Y}} = [\|y_i - y_j\|^2]_{i,j} \approx D$$

- Useful when
 - original points are not vectors but we can compute distances (e.g string edit distances, philogenetic distances)
 - · original points are in high dimensions
 - \bullet original distances are geodesic distances on a manifold ${\cal M}$
- Optimization problem $\min_{Y \in \mathbb{R}^{d \times n}} \|D D_Y\|_F^2$ with $\|D D_Y\|_F^2 = \sum_{ij} (d_{ij} \|y_i y_j\|^2)^2$
- Solution
 - **()** Relation with Gram matrix (of centered data): $K_c = -1/2HDH^T$ where H is the centering matrix!
 - **2** Hence, optimization equivalent to $\min_{Y \in \mathbb{R}^{d \times n}} \sum_{ij} (\kappa(x_i, x_j) y_i^T y_j)^2$
 - This is the same as rank d approximation to K! MDS has same solution Y as PCA if D contains Euclidean distances
- Algorithm summary: Calculate $K = -1/2HDH^T$, compute its *d* principal e-vectors/values, $Y = \Sigma V^T$ as before

 $Q\colon \mathsf{Could}\ \mathsf{MDS}\ \mathsf{be}\ \mathsf{an}\ \mathsf{embedding}\ \mathsf{algorithm}?$ What is different about $\mathsf{MDS}\ \mathsf{and}\ \mathsf{upcoming}\ \mathsf{algorithms}?$

Manifold Learning Intro

-Non-linear dimension reduction algorithms

2022-03-10

PCA, Kernel PCA, MDS recap

-Multi-dimensional scaling (MDS)

Exercise 2

MDS and Kernel PCA Prove that $K_c = -\frac{1}{2}HDH$.

Principal Curves and Surfaces (PCS)

- ${\scriptstyle \bullet}$ Elegant algorithm , most useful for d=1 (curves)
- Efficient version by ?
- Also works in noise ??
- data in \mathbb{R}^D near a curve (or set of curves)

What is a density ridge

In other words, on a ridge

- $\nabla p \propto v_1$ direction of least negative curvature (LNC)
- $\nabla p, v_1$ are tangent to the ridge

Gradient and Hessian for Gaussian KDE

- Data $\xi_{1:n} \in \mathbb{R}^D$
- Let p be the kernel density estimator with some kernel width h.

$$p(\xi) = \frac{1}{nh^d} \sum_{i=1}^n \kappa(\frac{\xi - \xi_i}{h}) = \frac{1}{nh^d} \sum_{i=1}^n \exp\left(-\frac{(\xi - \xi_i)^2}{2h^2}\right) / \omega_d$$
(5)

• We prefer to work with $\ln p$ which has the same critical points/ridges as p

• $\nabla \ln p = \frac{1}{p} \nabla p = g$ • $\nabla^2 \ln p = -\frac{1}{p^2} \nabla p \nabla p^T + \frac{1}{p} \nabla^2 p = H$ • $\nabla p(\xi) = \frac{1}{nh^d} \sum_{i=1}^n - \underbrace{(\xi - \xi_i)/h^2}_{i=1} \exp\left(-\frac{(\xi - \xi_i)^2}{2h^2}\right) / \omega_d$ hence

U;

$$g(\xi) = -\frac{1}{h^2} \left[\xi - \sum_{i=1}^n \xi_i \exp\left(-\frac{(\xi - \xi_i)^2}{2h^2}\right) / \sum_{i=1}^n \exp\left(-\frac{(\xi - \xi_i)^2}{2h^2}\right) \right] = -\frac{1}{h^2} \left[\xi - m(\xi)\right]$$
(6)

• Mean-shift appears! • $H(\xi) = \sum_{i=1}^{n} w_i u_i u_i^T - g(\xi)g(\xi)^T - \frac{1}{h^2}I$

Marina Meilă (Statistics)

SCMS Algorithm

SCMS = Subspace Constrained Mean Shift	
$\begin{array}{ll} \text{Init} & \text{any } x^1 \\ \text{for} & k = 1, 2, \dots \end{array}$	Density estimated by $p = \text{data} \star \text{Gaussian kernel of width } h$
() calculate $g^k \propto abla \ln p(x^k)$	by Mean-Shift $\mathcal{O}(nD)$
$ P^k = \nabla^2 \ln p(x^k) $	$\mathcal{O}(nD^2)$
Scompute v ₁ principal e-vector of	f H^k $\mathcal{O}(D^2)$
$ x^{k+1} \leftarrow x^k + \operatorname{Proj}_{V_1^{\perp}} g^k $	$\mathcal{O}(D)$
until convergence	

until convergence

- Algorithm SCMS finds 1 point on ridge; *n* restarts to cover all density
- Run time $\propto nD^2/\text{iteration}$
- $\bullet \ \, {\rm Storage} \propto D^2$

Principal curves found by SCMS

LBFGS=accelerated, approximate SCMS - coming next!

Accelerating SCMS

- reduce dependency on *n* per iteration
 - ignore points far away from ξ
 - use approximate nearest neighbors (clustering, KD-trees,...
- reduce number of SCMS runs: start only from n' < n points
- reduce number iterations: track ridge instead of cold restarts
 - project ∇p on v_1 instead of v_1^{\perp}
 - tracking ends at critical point (peak or saddle)

• reduce dependence on D

- approximate v₁ without computing whole H
- $D^2 \leftarrow mD$ with $m \approx 5$

(Approximate) SCMS step without computing Hessian

- Given $g \propto \nabla p(x)$
- Wanted $\operatorname{Proj}_{v_1^{\perp}} g = (I v_1 v_1^{\mathsf{T}})g$
- Need V1

principal e-vector of $H = \nabla^2(\ln p)$ for $\lambda_1 =$ largest e-value of H without computing/storing H

(Approximate) SCMS step without Hessian

Wanted

 v_1 principal e-vector of $H = -\nabla^2(\ln p)$ for $\lambda_1 =$ smallest e-value of H

First Idea

() use LBFGSS to approximate H^{-1} by $\hat{H^{-1}}$ of rank 2m [Nocedal & Wright]

- Run time $\propto Dm + m^2$ / iteration (instead of nD^2) Storage $\propto 2mD$ for $\{x^{k-l} x^{k-l-1}\}_{l=1:m}, \{g^{k-l} g^{k-l-1}\}_{l=1:m}$
- Problem v_1 too inaccurate to detect stopping
- Second idea
 - **1** store $\{x^{k-l} x^{k-l-1}\}_{l=1:m} \cup \{g^{k-l} g^{k-l-1}\}_{l=1:m} = V$
 - span V approximates principal subspace of H
 - a minimize $v^T H v$ s.t. $v \in \text{span } V$ where H is exact Hessian
- Possible because $H = \sum w_i u_i u_i^T gg^T \frac{1}{h^2}I$ with $w_{1:n}, u_{1:n}$ computed during Mean-Shift
- Run time $\propto n'Dm + m^2$ / iteration (instead of nD^2)
- Storage $\propto 2mD$

-Non-linear dimension reduction algorithms

— Principal Curves and Surfaces (PCS)

-(Approximate) SCMS step without Hessian

$\begin{aligned} & (Appendix D) \leq SLMS store without Homsian \\ & & \label{eq:store} H = -\nabla^{(0)}_{1} p_{1} p_{2} p_{3} (m_{1} h_{1} h_{2} h_{3} h$

Exercise 3

Subspace constrained principal e-vector Let $H \in \mathbb{R}^{D \times D}$ be a symmetric matrix, and $V \in \mathbb{R}^{D \times m}$ an orthogonal matrix defining a subspace. We want to obtain

 $\underset{v \in \text{span } V}{\operatorname{argmax}} v^{\mathsf{T}} H v \quad the \text{ principal } e\text{-vector constrained to } V. \tag{7}$

a. Prove that v is the principal e-vector of a symmetric $m \times m$ matrix W. Hint: v = Vu with $u \in \mathbb{R}^m$ for any $v \in \text{span } V$.

b. What is W for the Hessian H used in SCMS? and what is the dimension of W in this case?

Embedding algorithms

- Map \mathcal{D} to \mathbb{R}^s where $s \geq d$ (global coordinates)
- Can also map a local neighborhood $U \subseteq \mathcal{D}$ to \mathbb{R}^d (local, intrinsic coordinates)

Input

- embedding dimension *m*
- $\bullet\,$ neighborhood radius $\epsilon\,$
- neighborhood graph, i.e. {neigh_i, Ξ_i , for i = 1 : n}, $A = [||\xi_i \xi_j||]_{i,j=1}^n$ distance matrix $A_{ij} = \infty$ if $i \notin \text{neigh}_j$

The Isomap algorithm

Isomap Algorithm [Tennenbaum, deSilva & Langford 00]

Input A, dimension d

- **9** Find all shortest path distances in neighborhood graph $A_{ii} \leftarrow$ graph distance between i, j
- Construct matrix of squared distances

$$M = [(A_{ij})^2]$$

(a) use Multi-Dimensional Scaling MDS(M, d) to obtain d dimensional coordinates Y for D

The Diffusion Maps (DM)/ Laplacian Eigenmaps (LE) Algorithm

Diffusion Maps Algorithm

Input distance matrix $A \in \mathbb{R}^{n \times n}$, bandwidth ϵ , embedding dimension s

- **()** Compute Laplacian $L \in \mathbb{R}^{n \times n}$
- **2** Compute eigenvectors of *L* for smallest s + 1 eigenvalues $[\phi_0 \phi_1 \dots \phi_s] \in \mathbb{R}^{n \times s}$
 - ϕ_0 is constant and not informative
 - These are the slow modes of the system

The **embedding coordinates** of $p_{i:}$ are $(\phi_{i1}, \ldots, \phi_{is})$

- Embedding dimension s = number of eigenvectors
- Intrinsic dimension $d \leq s$ effective number of degrees of freedeom

UMAP: Uniform Manifold Approximation and Projection [McInnes, Healy, Melville,2018]

Input k number nearest neighbors, d,

- Find k-nearest neighbors
- **2** Construct (asymmetric) similarities w_{ij} , so that $\sum_{i} w_{ij} = \log_2 k$. $W = [w_{ij}]$.
- **3** Symmetrize $S = W + W^T W \cdot * W^T$ is similarity matrix.
- **9** Initialize embedding ϕ by LAPLACIANEIGENMAPS.
- Optimize embedding.
 - Iteratively for n_{iter} steps
 - $\textbf{O} \ \ \text{Sample an edge } ij \text{ with probability } \propto \exp{-d_{ij}}$
 - **2** Move ϕ_i towards ϕ_j
 - **③** Sample a random j' uniformly
 - (a) Move ϕ_i away from $\phi_{i'}$

Stochastic approximate logistic regression of $||\phi_i - \phi_j||$ on d_{ij} .

Output ϕ
Embedding algorithms

Isomap vs. Diffusion Maps

Isomap

- Preserves geodesic distances
 - $\bullet\,$ but only when ${\cal M}$ is flat and "data" convex
- Computes all-pairs shortest paths $\mathcal{O}(n^3)$
- Stores/processes dense matrix

DiffusionMap

- Distorts geodesic distances
- Computes only distances to nearest neighbors *O*(n^{1+ε})
- Stores/processes sparse matrix

• t-SNE, UMAP visualization algorithms

The (renormalized) Laplacian

Laplacian

Input distance matris $A \in \mathbb{R}^{n \times n}$, bandwidth ϵ

- Compute similarity matrix $S_{ij} = \exp \left| -\frac{||U_{i} U_{j}||^2}{\epsilon} \right|$
- **2** First normalization $d_i = \sum_{j=1}^n S_{ij}$, $\tilde{L}_{ij} = L_{ij}/d_i d_j$
- Second normalization $d'_i = \sum_{j=1}^n \tilde{L}_{ij}$, $P_{ij} = \tilde{L}_{ij}/d'_i$
- $L = \frac{1}{\epsilon^2}(I P)$
- **Output** L, d'_i
- Laplacian L central to understanding the manifold geometry
- $\lim_{n \to \infty} L = \Delta_{\mathcal{M}}$ [Coifman,Lafon 2006]
- Renormalization trick cancels effects of (non-uniform) sampling density [Coifman & Lafon 06]

Exercise 4

Renormalized Laplacian a. Show that $L1_{[]}=0$ for the renormalized Laplacian. Hence L always has a 0 e-value.

Exercise 5 (Unnormalized Laplacian)

Let $L^{un} = D - A$ be the unnormalized Laplacian of graph defined by A. Prove that $x^T L^{un} x = \sum_{(i,j) \in \mathcal{E}} (x_i - x_j)^2$ for any $x \in \mathbb{R}^n$.

Embedding algorithms summary

- Many different algorithms exist
- All start from neighborhood graph and distance matrix A
- Most use e-vectors of a tranformation of A (preserve the sparsity pattern)
- DiffusionMaps can separate manifold shape from sampling density
- LTSA "correct" at boundaries
- Isomap best for flat manifolds with no holes, small data
- Most embeddings sensitive to
 - choice of radius ϵ (within "correct" range)
 - ${\scriptstyle \bullet}$ sampling density p
 - choice of kernel κ, K-nn vs. radius neighbors i.e. most embeddings introduce distortions!!

Failures vs. distortions

• Distortion vs failure

- ϕ distorts if distances, angles, density not preserved, but ϕ smooth and invertible
- If ϕ does not preserve topology (=preserve neighborhoods), then we call it a failure, for simplicity.
- Examples: points ξ_i, ξ_j are not neighbors in M but are neighbors in φ(M), or viceversa (hence φ is not invertible, or not continuous)
- Most common modes of failure
 - A does not capture topology
 - usually becasuse ϵ too small or too large
 - · choice of e-vectors

Artefacts

- Artefacts=features of the embedding that do not exist in the data (clusters, holes, "arms", "horseshoes")
- What to beware of when you compute an embedding
 - algorithms that claim to choose ϵ automatically
 - confirming the embedding is "correct" by visualization: tends to over-smooth, i.e. ϵ over-estimated
 - K-nn (default in sk-learn!) instead of radius-neighbors: tends to create clusters
 - large variations in density: subsample data to make it more uniform
 - "horseshoes": choose other e-vectors (ϕ is almost singulare)
- Very popular heuristics (no guarantees/artefacts probable): LLE, t-SNE, UMAP, neural networks

Manifold Learning Intro

—Non-linear dimension reduction algorithms

Embedding algorithms

-Artefacts

Artefacts
 Artsfacts-factures of the embedding that do not mist in the data (clusters, holes, "heres", "horsehoet")
 What is hence of whom you compute an orchadding adjustment to be in the intervention of advanced and and only the method of a strength of the intervention of the one encode, i.e. a new minimated K on (details in the strengt) intervention of analyzing intervents is constrainted to any details in the strengt) intervention of advanced and the matter its more only and the providence of the intervention of the intervention of the intervention is the advanced of the intervention of the intervention of the intervention is the advanced of the intervention of the inter
· Very popular heuristics (eo guarantees/artefacts probable): LLE, t-SNE, UMAP, neural

Exercise 6

Independent coordinates and artefacts for long strips, a,b

a. Generate a rectangle with a hole. Generate the following sets of points on 2D grids.

	dimension	grid spacing	number points
left side	$[0,1] \times [0,1]$	0.05	441
middle	$[1.01, 2] \times [0, 0.3]$	0.01	$100 \times 31 = 3100$
middle	$[1.01, 2] \times [0.7, 1.]$	0.01	$100 \times 31 = 3100$
right side	[2.05, 3] imes [0, 1]	0.05	420
\mathcal{D}	$[0,3] \times [0,1]$		7081

Plot the data to verify that it is a rectangle with a rectangular hole. The density of the grid is not uniform. In all plots from here on, color the points by their original y coordinate. Ensure that the dot size is small enough for clarity (size 1 or less recommended).

b. Let D consist of all the points in **a**. Set the kernel width $\epsilon = 0.05$ and the [optional] neighborhood radius r = 0.15001 (i.e. just over 0.15). Calculate for these data

- A the distance matrix (can be a dense matrix)
- S the similarity matrix (can be a dense matrix)
- $L^{rw} = I D^{-1}S$ the random walks Laplacian
- L the renormalized Laplacian

Display these matrices as square images with an appropriate color scale (don't forget to show the scale with each plot).

Manifold Learning Intro

Non-linear dimension reduction algorithms

- Embedding algorithms
 - -Artefacts

Artefacts-features of the embedding that do not exist in the data (clusters, holes, "homehoed")

- · What to beware of when you compute an embedding
- Flut to besure of some you compute an estimating algorithms that claims to shown a advantation is made to some sensith, i.e. a some estimate conferring the endedding is "sorrest" by sizualization: tends to cover sensith, i.e. a some estimate K on (detault is skr-lanzed) initiated of radius englishes: tends to cover shoknes. Jung variations in density, subample data to match it more sensitive
- · Very popular heuristics (no guarantees/artefacts probable): LLE, t-SNE, UMAP, neural

Exercise 7

Independent coordinates and artefacts for long strips - c,d,e,f

c. Compute $\phi_{0.9}$ the principal e-vectors 0 : 9 for L and discard ϕ_0 the constant vector. Display $\phi_{1.9}$ as a pairwise plot. Ensure that the dot size is small enough for clarity (size 1 or less recommended). **d.** From the plot in **c.** choose a pair of coordinates ϕ_1, ϕ_k that produces the embedding visually closest to the original rectangle. While there is some subjectivity in this choice, embeddings that are "almost dimension 1", or with self-crossings are NOT close to the original data. e. Repeat c,d with L^{rw} , denoting its e-vectors $\psi_{0:9}$.

f. Embed \mathcal{D} with ISOMAP (OK to use outsourced code) and plot the data in the embedding coordinates y_1, y_2 .

Embedding in 2 dimensions by different manifold learning algorithms

Original data (Swiss Roll with hole)

Hessian Eigenmaps (HE)

Laplacian Eigenmaps (LE)

Local Linear Embedding (LLE)

lsomap

Local Tangent Space Alignment (LTSA)

Preserving topology vs. preserving (intrinsic) geometry

- Algorithm maps data $p \in \mathbb{R}^D \longrightarrow \phi(p) = x \in \mathbb{R}^m$
- Mapping $\mathcal{M} \longrightarrow \phi(\mathcal{M})$ is diffeomorphism preserves topology

often satisfied by embedding algorithms

- Mapping ϕ is **isometry**
 - preserves distances along curves in \mathcal{M} , angles, volumes For most algorithms, in most cases, ϕ is not isometry

Preserves topology

Preserves topology + intrinsic geometry

Theoretical results in isometric embedding

Positive results

General theory

- Nash's Theorem: Isometric embedding is possible.
- Diffusion Maps embedding is isometric in the limit [Berard,Besson,Gallot 94],[Portegies:16]

Special cases

- Isomap [Bernstein, Langford, Tennenbaum 03] recovers flat manifolds isometrically
- LE/DM recover sphere, torus with equal radii (sampled uniformly)
 - Follows from consistency of Laplacian eigenvectors [Hein & al 07,Coifman & Lafon 06, Singer 06, Ting & al 10, Gine & Koltchinskii 06]

Negative results

- Obvious negative examples
- No affine recovery for normalized Laplacian algorithms [Goldberg&al 08]

Empirically, most algorithms

- preserve neighborhoods (=topology)
- distort distances along manifold (=geometry)
- distortions occur even in the simplest cases
- distortion persists when n → ∞
- one cause of distortion is variations in sampling density *p*; [Coifman& Lafon 06] introduced Diffusion Maps (DM) to eliminate these

Metric Manifold Learning

Wanted

- \bullet eliminate distortions for any "well-behaved" ${\cal M}$
- ullet and any any "well-behaved" embedding $\phi(\mathcal{M})$
- in a tractable and statistically grounded way

Idea

```
Given data \mathcal{D} \subset \mathcal{M}, some embedding \phi(\mathcal{D}) that preserves topology (true in many cases)
```

- Estimate distortion of ϕ and correct it!
- The correction is called the pushforward Riemannian Metric g

Corrections for 3 embeddings of the same data

Isomap

Laplacian Eigenmaps

Definition 4 (Riemannian Metric)

The Riemannian metric g defines an inner product $<,>_g$ on the tangent space $\mathcal{T}_p\mathcal{M}$ for every $p \in \mathcal{M}$.

Definition 5 (Riemannian Manifold)

A Riemannian manifold (\mathcal{M}, g) is a smooth manifold \mathcal{M} with a Riemannian metric g defined at every point $p \in \mathcal{M}$.

- p point on \mathcal{M}
- $\mathcal{T}_p \mathcal{M} = \text{tangent subspace at } p$ at each $p \in \mathcal{M}$, g defines quadratic form G_p

$$\langle v, w \rangle = v^T G_p w$$
 for $v, w \in T_p \mathcal{M}$ and for $p \in \mathcal{M}$

- g is symmetric and positive definite tensor field
- g also called first fundamental form

In coordinates at each point $p \in \mathcal{M}$, G_p is a positive definite matrix of rank d

Metric preserving manifold learning - Riemannian manifolds basics

All (intrinsic) geometric quantities on \mathcal{M} involve g

• Volume element on manifold

$$Vol(W) = \int_W \sqrt{\det(g)} dx^1 \dots dx^d$$
.

 $\bullet~{\rm Length}$ of curve γ

$$I(\gamma) = \int_{a}^{b} \sqrt{\sum_{ij} g_{ij} \frac{dx^{i}}{dt} \frac{dx^{j}}{dt}} dt,$$

 $\bullet\,$ Under a change of parametrization, g changes in a way that leaves geometric quantities invariant

Calculating distances in the manifold $\ensuremath{\mathcal{M}}$

true distance d = 1.57

		Shortest	Metric	Rel.
Embedding	f(p) - f(p')	Path	â	error
Original data	1.41	1.57	1.62	3.0%
Isomap $m = 2$	1.66	1.75	1.63	3.7%
LTSA $m = 2$	0.07	0.08	1.65	4.8%
LE <i>m</i> = 2	0.08	0.08	1.62	3.1%

curve $\gamma \approx (y_0, y_1, \dots, y_K)$ path in graph

geodesic distance
$$\hat{d} = \sum_{k=0}^{K} \sqrt{(y_k - y_{k-1})^T G_{ij}(y_k)(y_k - y_{k-1})}$$

G for Sculpture Faces

- n = 698 gray images of faces in $D = 64 \times 64$ dimensions
- head moves up/down and right/left

Problem: Estimate the g associated with ϕ

- Given:
 - data set $\mathcal{D} = \{p_1, \dots, p_n\}$ sampled from Riemannian manifold $(\mathcal{M}, g_0), \mathcal{M} \subset \mathbb{R}^D$
 - embedding { y_i = φ(p_i), p_i ∈ D } by e.g DiffusionMap, Isomap, LTSA, ...
- Estimate G_i ∈ ℝ^{m×m} the pushforward Riemannian metric at p_i ∈ D in the embedding coordinates φ

• The embedding $\{y_{1:n}, G_{1:n}\}$ will preserve the geometry of the original data

Relation between g and Δ

- $\Delta = Laplace$ -Beltrami operator on $\mathcal M$
 - $\Delta = \operatorname{div} \cdot \operatorname{grad}$
 - on C^2 , $\Delta f = \sum_j \frac{\partial^2 f}{\partial \xi_j^2}$

• on weighted graph with similarity matrix S, and $t_p = \sum_{pp'} S_{pp'}$, $\Delta = \mathrm{diag} \{ t_p \} - S$

- $\bullet \ \Delta = \mathsf{Laplace}\mathsf{-}\mathsf{Beltrami} \ \mathsf{operator} \ \mathsf{on} \ \mathcal{M}$
- G Riemannian metric (in coordinates)
- $H = G^{-1}$ matrix inverse

(Differential geometric fact)

$$\Delta f = \sqrt{\det(H)} \sum_{l} \frac{\partial}{\partial x^{l}} \left(\frac{1}{\sqrt{\det(H)}} \sum_{k} H_{lk} \frac{\partial}{\partial x^{k}} f \right),$$

Estimation of G^{-1}

Let Δ be the Laplace-Beltrami operator on \mathcal{M} , $H = G^{-1}$, and $k, l = 1, 2, \dots d$.

$$\frac{1}{2}\Delta(\phi_k - \phi_k(p))(\phi_l - \phi_l(p))|_{\phi_k(p),\phi_l(p)} = H_{kl}(p)$$

Intuition:

- Δ applied to test functions $f = \phi_{\mu}^{\text{centered}} \phi_{I}^{\text{centered}}$
- this produces $G^{-1}(p)$ in the given coordinates
- our algorithm implements matrix version of this operator result
- consistent estimation of Δ is well studied [Coifman&Lafon 06,Hein&al 07]

```
      Manifold Learning Intro
      Extention of G^{-1}

      Metric preserving manifold learning – Riemannian manifolds basics
      L = 0 is a base spectrum of L = 0.

      L = 0 is a base spectrum of L = 0 is a base spectrum of L = 0.

      L = 0 is a base spectrum of L = 0.

      L = 0 is a base spectrum of L = 0.

      L = 0 is a base spectrum of L = 0.

      L = 0 is a base spectrum of L = 0.

      L = 0 is a base spectrum of L = 0.

      L = 0 is a base spectrum of L = 0.

      L = 0 is a base spectrum of L = 0.

      L = 0 is a base spectrum of L = 0.

      L = 0 is a base spectrum of L = 0.

      L = 0 is a base spectrum of L = 0.

      L = 0 is a base spectrum of L = 0.

      L = 0 is a base spectrum of L = 0.

      L = 0 is a base spectrum of L = 0
```

this formula includes the change of coordinates. first orderder term s cancels because it's applied to $\times i^{*} \times j$

Metric Manifold Learning algorithm

Given dataset ${\mathcal D}$

- Preprocessing (construct neighborhood graph, ...)
- 2 Find an embedding ϕ of \mathcal{D} into \mathbb{R}^m
- Stimate discretized Laplace-Beltrami operator L
- Setimate H_p and $G_p = H_p^{\dagger}$ for all p

• For
$$i, j = 1 : m$$
,
 $H^{ij} = \frac{1}{2} [L(\phi_i * \phi_j) - \phi_i * (L\phi_j) - \phi_j * (L\phi_i)]$
where $X * Y$ denotes elementwise product of two vectors $X, Y \in \mathbb{R}^N$
• For $p \in \mathcal{D}$, $H_p = [H_p^{ij}]_{ij}$ and $G_p = H_p^{\dagger}$

Output (ϕ_p, G_p) for all p

Algorithm METRICEMBEDDING

Input data \mathcal{D} , *m* embedding dimension, ϵ resolution

- **(**) Construct neighborhood graph p, p' neighbors iff $||p p'||^2 \le \epsilon$
- Onstruct similary matrix

$$S_{pp'} = e^{-\frac{1}{\epsilon}||p-p'||^2}$$
 iff p, p' neighbors, $S = [S_{pp'}]_{p,p' \in \mathcal{D}}$

Onstruct (renormalized) Laplacian matrix [Coifman & Lafon 06]

•
$$t_p = \sum_{p' \in \mathcal{D}} S_{pp'}, T = \text{diag } t_p, p \in \mathcal{D}$$

• $\tilde{S} = T^{-1}ST^{-1}$
• $\tilde{t}_p = \sum_{p' \in \mathcal{D}} \tilde{S}_{pp'}, \tilde{T} = \text{diag } \tilde{t}_p, p \in \mathcal{D}$
• $P = \tilde{T}^{-1}\tilde{S}$
• $L = (I - P)/\epsilon^2$

O Embedding [φ_p]_{p∈D} = EMBEDDINGALG(D, m)
 O Estimate embedding metric H_p at each point

denote
$$Z = X * Y, X, Y \in \mathbb{R}^N$$
 iff $Z_i = X_i Y_i$ for all i
• For $i, j = 1 : m, H^{ij} = \frac{1}{2} [L(\phi_i * \phi_j) - \phi_i * (L\phi_j) - \phi_j * (L\phi_i)]$ (column vector)
• For $p \in D, \tilde{H}_p = [H_p^{ij}]_{ij}$ and $H_p = \tilde{H}_p^{\dagger}$
Ouput $(\phi_p, H_p)_{p \in D}$

Manifold Learning Intro

⁻Metric preserving manifold learning - Riemannian manifolds basics

-Estimating the Riemannian metric

This renormalizes the rows of \tilde{S} to sum to 1.

Computational cost

 $n = |\mathcal{D}|$, D = data dimension, m = embedding dimension

- Neighborhood graph +
- ⁽²⁾ Similarity matrix $O(n^2 D)$ (or less)
- Laplacian O(n²)
- EMBEDDINGALG e.g. $\mathcal{O}(mn^2)$ (eigenvector calculations)
- Embedding metric
 - $\mathcal{O}(nm^2)$ obtain g^{-1} or h^{\dagger}
 - $\mathcal{O}(nm^3)$ obtain g or h
- Steps 1–3 are part of many embedding algorithms
- Steps 3–5 independent of ambient dimension ${\it D}$
- Matrix inversion/pseudoinverse can be performed only when needed

Metric Manifold Learning summary

Why useful

- Measures local distortion induced by any embedding algorithm
 - $G_i = I_d$ when no distortion at p_i
- Estimating distortion
- Correcting distortion
 - Integrating with the local volume/length units based on G_i
 - Riemannian Relaxation [McQueen, M, Perrault-Joncas NIPS16]
- Algorithm independent geometry preserving method
- Outputs of different algorithms on the same data are comparable

Applications

- Estimation of neighborhood radius [Perrault-Joncas,M,McQueen NIPS17] and of intrinsic dimension *d* (variant of [Chen,Little,Maggioni,Rosasco])
- selecting eigencoordinates [Chen, M NeurIPS19]

What graph? Radius-neighbors vs. k nearest-neighbors

- *k*-nearest neighbors graph: each node has degree *k*
- radius neighbors graph: p, p' neighbors iff $||p p'|| \le r$
- Does it matter?
- Yes, for estimating the Laplacian and distortion
 - Why? [Hein 07, Coifman 06, Ting 10, \dots] k-nearest neighbor Laplacians do not converge to Laplace-Beltrami operator Δ
 - but to $\Delta + 2\nabla(\log p) \cdot \nabla$ (bias due to non-uniform sampling)
- Renormalization of Laplacian also necessary

Self-consistent method of chosing ϵ

- Every manifold learning algorithm starts with a neighborhood graph
- Parameter ϵ
 - is neighborhood radius
 - and/or kernel banwidth
- For example, we use the kernel

 $K(p,p') = e^{-rac{||p-p'||^2}{\epsilon^2}}$ if $||p-p'||^2 \le \epsilon$ and 0 otherwise

• Problem: how to choose ϵ ?

Existing work

- Theoretical (asymptotic) result $\sqrt{\epsilon} \propto n^{-\frac{1}{d+6}}$ [Singer06]
- Visual inspection?
- Cross-validation ?
 - only if related to prediction task
- heuristic for K-nearest neighbor graph [Chen&Buja09]
 - depends on embedding method used
 - $\bullet\,$ K-nearest neighbor graph has different convergence properties than ϵ neighborhood
- Geometric Consistency [Perrault-Joncas&Meila17]
 - Computes "isometry" in 2 different ways and minimizes distortion between them

Geometric Consistency: Idea

• Idea: choose ϵ so that geometry encoded by L_{ϵ} is closest to data geometry

- For given ϵ and data point p
 - Project neighbors of p onto tangent subspace
 - this "embedding" is approximately isometric to original data
 - 2 Calculate Laplacian $L(\epsilon)$ and estimate distortion $H_{\epsilon,p}$ at p
 - $H_{\epsilon,p}$ must be $\approx I_d$ identity matrix
- Completely unsupervised

The distortion measure

Input: data set \mathcal{D} , dimension $d' \leq d$, scale ϵ

- **(**) Estimate Laplacian $L(\epsilon)$ and weights $w_i(\epsilon)$ with LAPLACIAN
- Project data on tangent plane at p
 - For each p
 - Let $\operatorname{neigh}_{p,\epsilon}^{\cdot} = \{p' \in \mathcal{D}, \ \|p' p\| \le c\epsilon\}$ where $c \in [1, 10]$
 - Calculate (weighted) local PCA (wIPCA) PCA(neigh_{p, ϵ}, d') (with weights $w_i(\epsilon)$)
 - Calculate coordinates z_i in PCA space for points in neigh_{p,e}
- **Solution** Estimate $H_{\epsilon,p} \in \mathbb{R}^{d' \times d'}$ by RMETRIC
 - For each p
 - Use row p of L
 - z_i 's play the role of ϕ

Output quadratic distortion over all p's D(ε) = ∑_{p∈D} ||H_{ε,p} − I_d||²₂ Output D(ε)

- Select $\epsilon^* = \operatorname{argmin}_{\epsilon} D(\epsilon)$
- $d' \leq d$ (more robust)
- H more robust than G
- minimum can be found by 0-th order optimization (faster than grid search)

Distorsions versus radii

Example ϵ and distortion for aspirin

- Each point = a configuration of the aspirin molecule
- Cloud of point in D = 47 dimensions embedded in m = 3 dimensions
- (only 1 cluster shown)

Bonus: Intrinsic Dimension Estimation in noise

- Geometric consistency + eigengap method of [Chen,Little,Maggioni,Rosasco,2011]
 - do local PCA for a range of neighborhood radii
 - 2 choose a an appropriate radius ϵ (by Geometric consistency)
 - 6 dimension = largest eigengap between λ_k and λ_{k+1} at radius ϵ (proof by Chen&al)
 - ("largest" = most frequent largest over a sample)

Distortion vs. ϵ

Singular values of IPCA vs. ϵ

Example: Intrinsic Dimension Estimation results

