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Problems in Network Modeling

Connectivity
Finding communities (graph clustering)

Spectral clustering

Centrality, prestige, and authority The goal is to give each node a score that represents its
prestige or social importance. For example

authority of sources of information (like in PageRank or HITS) on the internet
impact in citation networks
influence, i.e. capacity of influencing others, or of attracting followers, in social networks

Semisupervised learning
Visualization e.g. by node embedding
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Problems in Network Modeling

Connectivity and communities

Connectivity
Wanted large subsets of nodes that are almost disconnected from the rest.
can we cut the graph into two parts of comparable sizes, that have very few edges crossing between
them?

Community detection
Amounts to graph clustering
in computer science, social sciences, statistics, mathematics (Area where most statistical models
have been developed.)
The quality measure for a community is called conductance and is related to the Normalized Cut.

φ(S) =
Cut(S,V \ S)

min(Vol(S),Vol(V \ S))
(1)

NCut(S) = Cut(S,V \ S)

(
1

Vol(S)
+

1

Vol(V \ S)

)
(2)

real networks: community sizes do not grow in proportion to graph size! Hence realistic
models have K →∞ when n→∞.
Extensions: overlapping communities, nodes with features

Marina Meila (UW) CSE 547/STAT 548 Winter 2022 3 / 19



Problems in Network Modeling

Centrality, Influence, Authority

Various scores have been developed to quantify the above

(well understood measures)
node degree (number of neighbors)
eigenvector centrality
PageRank and Personalized PageRank (PPR)
(not so well understood, may behave in unpredictable ways)
closeness centrality

CC (i) =
n − 1∑
j d(i , j)

(3)

betweeness centrality

CB(i) =
∑
j,k

σjk (i)

σjk
(4)

where d(i , j) is the graph distance and σjk (i) is the number of shortest paths between j , k
that pass through i .
...and many more
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Problems in Network Modeling

Semisupervised Learning

We want to estimate a function y(i), i ∈ V on the graph. For some nodes i ∈ S, y is observed;
in other words these nodes are labeled, while the remaining nodes in V \ S are unlabeled. This
problem is similar to supervised learning, with the difference that we know for which future data
we need to predict y .
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Models for networks

Models for networks

Erdos-Renyi (the null model)
p1 and p2 models (GLM models)
SBM (Stochastic Block Model)
ERGM

Latent space model
Mixed membership SBM
Multiplicative attributes model (overlapping communities)
Graphons

SBM, MMSBM, and MAGM model communities explicitly.
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Models for networks Exponential Random Graph Models (ERGM)

ERGM Definitions

G = (V ,E) undirected graph, with |V | = n nodes and edge set E = { ij , i 6= j} ⊂ V × V .
random graph model is a distribution P(E |V ) defined for all finite sets of nodes V .
equivalently, associate an indicator variable Yij to each pair of nodes, write P as a
distribution of Y |V with some parameters θ.
Exponential Random Graph Model (ERGM) is an exponential family model for
YN = [Yij ]1≤i<j≤n.

Pθ(YN) = exp
(
θT tN(YN)− ψN(θ)

)
(5)

N = n(n − 1)/2 is the dimension of Y

tN ∈ Rd is a vector of sufficient statistics computed from Y .
dependence of V is implicit, through the dependence of N on n.

Extensions

1 Directed graphs
2 restricting the possible edges (N = dimY )
3 Considering nodes with features Xi , i = 1 : n which can influence the probabilities of the

edges.

Pθ(YN |X1:n) = exp
(
θT tN(YN |X1:n)− ψN(θ,X1:n)

)
(6)
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Models for networks Exponential Random Graph Models (ERGM)

The Erdös-Renyi model

Example (The Erdös-Renyi (ER) model)

For this model, tN =
∑

yij and there is a single parameter θ ∈ R. Thus,

Pθ(yN) ∝ eθ
∑

yij =
∏
ij

eθyij (7)

Each edge is sampled iid from a Bernoulli with natural parameter θ.
The most probable graph is the complete graph if θ > 0 and the empty graph if θ < 0.
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Models for networks Exponential Random Graph Models (ERGM)

The Stochastic Block-Model (SBM)

Example (The Stochastic Block-Model (SBM))

The assumption is that the nodes in V are partitioned into K clusters; Xi ∈ {1 : K} denotes the
cluster that i belongs to. We have K(K + 1)/2 sufficient statistics, defined as

tkl (y , x) =
∑

xi=k,xj=l or xi=l,xj=k

yij (8)

an edge Yij is sampled independently with a probability that dependins on where its
endpoints lie.
for known X , the normalization constant for the SBM is tractable.

The ER and the SBM are called diadic models, which means that edges are sampled
independently conditioned on the features of their endpoints.
Diadic models do not fit well the real world social-networks. In particular, features like
triangles and stars have higher frequency in real networks than the frequencies predicted by
independent sampling of edges.
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Models for networks Exponential Random Graph Models (ERGM)
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Models for networks Exponential Random Graph Models (ERGM)

ERGM with higher order features

The sufficient statistics count other “interesting” features, like triangles, nodes of degree
k = 2, 3, 4 . . ., 4 and 5 cliques, in addition to edges.

Example (ERGM with star and triangle features)

Let t1,N count the number of edges, t2,N the number of triangles, t3,N the number of 3-stars
(nodes of degree 3), t4,N the number of 4-stars, etc. There is a parameter θk for each statistic
tk,N ; when θk > 0 the model favors the graphs which contain more of feature k, and when θk < 0
then graphs containing fewer of this feature will be more probable.

Pθ(yN) = eθ1#edges+θ2#triangles+θ3#3-stars+...−ψN (θ1,θ2,...) (9)

these statistics will be dependent on each other
the normalization constant Z is generally intractable.
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Challenges in modeling with ERGMs

Challenges – Algorithmic

Parameter estimation

Estimation of parameters from a single network
the Y variables are dependent: estimation from non-iid data.
Sometimes the features X are dependent and not observed (e.g. SBM)

assume X known (easier)
estimate X e.g. by spectral clustering, then θ|X
MAP/Monte Carlo estimation of both θ and X

Computational issues

For most proper ERGMs, ψ is not computable in closed form or tractably.
Hence sampling form Pθ and exact inferences also intractable
For example, Pθ(Yij = 1|n) is intractable in model (9).
typically inference by MCMC
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Challenges in modeling with ERGMs

How do we use network models?

Model interpretation
predict various properties for other networks from the same source, with different n
e.g. number of triangles, diameter, expected degree of a node, number of edges
scientific interpretations

Testing
does network G fit model Pθ ?
are two networks from the same source?
Examples
in SBM, the expected degree grows (approximately) linearly with n – not realistic for e.g. people
community sizes do not grow linearly with n
expected number of triangles in a social network

Parameter interpretation
parameter consistency – not always true!
independence of n
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Instability and inconsistency phenomena in ERGMs

Instability and its consequences

Assume w.l.o.g. that tn ∈ {0, . . .TN}
For example the number of edges t1 ≤ N = n(n − 1)/2, the number of triangles
t2 ≤ n(n − 1)(n − 2)/6, the number of 3-stars t3 ≤ n(n − 1)(n − 2)(n − 3)/24.

A sufficient statistic tN is called stable iff TN
N

is bounded as N →∞
otherwise tn is unstable.
For example, t1 stable, t2, t3 unstable

Theorem (After Schweinberger)

Assume Pθ is a single parameter model with sufficient statistic tN unstable.

1 Denote yN ∼ y ′N if the two random graphs represented by yN , y
′
N differ in the value of a

single Yij . Then

max
yN∼y′

N

Pθ(yN)

Pθ(y ′N)
tends to infinity when N →∞.

(In other words, Pθ is sensitive to small changes in Y .)
2 The probability distribution Pθ concentrates on extreme values of the sufficient statistic, i.e.

for any θ and any ε ∈ (0, 1), Pθ [tN (Y ) ≥ (1− ε)TN ]→ 1, if θ > 0
or Pθ [tN (Y ) ≤ εTN ]→ 1, if θ < 0, when N →∞.
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Instability and inconsistency phenomena in ERGMs

(In)consistency of ERGM

Definition

The sufficient statistic t has separable increments iff for all set of nodes B, for all A ⊂ B, and for
all networks yA, the range of possible increments δ = tB(yB)− tA(yA) is the same, and the
conditional volume factor does not depend on yA, i.e. vB\A|A(δ, yA) depends only on δ.

Theorem ([Shalizi, Rinaldo,2013])

The exponential family Pθ is projective iff the sufficient statistics have separable increments.

For example, when a set of nodes A, with a network yA on them, is increased with B \ A, the
number of edges in examples 1, and 2, will increase by amounts that depend only on properties of
A and B, but not on what edges appear in yA. However, the number of triangles in B \ A will
depend on the configuration of edges in yA, and in particular on the number of triangles in yA.
Hence, diadic models are projective, but ERGMs (that count triangles and stars) are not.

Why does this matter?
Wanted: when n increases, parameters θ must have the same meaning = projectivity
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Instability and inconsistency phenomena in ERGMs
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Instability and inconsistency phenomena in ERGMs
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Instability and inconsistency phenomena in ERGMs
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Instability and inconsistency phenomena in ERGMs
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