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@ Graph clustering paradigms

© MNCut and Random Walks

© Embedding, the spectral mapping, lumpability

@ The algorithm

o Affinity propagation
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Graph clustering paradigms

Similarity based clustering

o Paradigm: the features we observe are measures of similarity/dissimilarity between pairs of
data points, e.g

points  features
Image segmentation  pixels distance in color space or location, separated by
a contour, belong to same texture

Social network people  friends, coworkers, phone calls, emails
Text analysis words appear in same context
@ The features are summarized by a single similarity measure S;;
e egS = eXk afeaturer (i) gor ol points i,
e symmetric S;; = Sj;
e non-negative S; > 0

@ We want to put points that are similar to each other in the same cluster, dissimilar points in
different clusters
o Problem is often cast as a graph cut problem

e points = graph nodes, similarity S;; = weight of edge ij
o
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Paradigms for grouping

o Graph cuts
remove some edges = disconnected graph
the groups are the connected components
@ By “similar behavior”
nodes i, j in the same group iff i,j “have the same pattern of connections” w.r.t other nodes
o By Embedding
o map nodes V = {1,2,...,n} — {x1,x2,...,xn} € RY then use standard classification and
clustering methods
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MNCut and Random Walks

Definitions

vV ={1,2,...,n}
o node degree or volume

jev
@ volume of cluster C C V
Dc=> D;
ieC
@ cut between subsets C,C’ C V
225
ieCjec’

o Multiway Normalized Cut of a partition A = {Cy.x} of V

K
Cut(Cy, Cr
MNCut(a) = 303 “7“”
k=1 k' £k De,

in particular, for K = 2,

1 1
MNCut(C, €'y = cut(c, c’y [ — +
Dc ' Der
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Motivation for MNCut

S, o 1/dist(,])
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MNCut and Random Walks

A random walks view

@ Define s
Py = 20 forallijeV
i D; or alli,
@ in matrix notation P = D~!S where P = [P;], D = diag(Dx, ... Dn)
o P defines a random walk over the graph nodes V
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MNCut and Random Walks

Grouping from the random walks point of view

o Idea: group nodes together if they transition in the same way to other clusters

B yetiow
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Pf,red = P'ﬂ"[i - 7'ed|i] = Z P.ij
jered
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Embedding, the spectral mapping, lumpability

. is the same as grouping by embedding

o embedding of V = mapping from V into RY
o Wanted: similar points embedded near each other
ideally, points in the same cluster mapped to the same point in R
Another look at P; ¢ a piecewise
P red constant function

sred =

— =l
P-.y(:l = fy(
Pi,y'ellt.\\ra'
Lfred
2/3[ - o
1/5 O
13 45"
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Embedding, the spectral mapping, lumpability

Some questions

o Not all graphs embed perfectly

/;

@ How many dimensions do we need?
@ Nice, but we need to know the clusters in advance. ..
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Embedding, the spectral mapping, lumpa

Lumpability

@ A vector v is piecewise constant w.r.t a clustering A iff v; = v; whenever i,j in same C € A

Another look at P; ¢ a plecewise
] constant function

= fyel
Poyet =

030 @

/5

@ Theorem [Lumpability][Meila&Shi 2001] Let S be a similarity matrix and A a clustering
with K clusters. Then P has K piecewise constant eigenvectors w.r.t A iff

Z Pj = Rccr whenveri € C, for allC,C’ € A
jec’
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The spectral mapping

vi v2Z

Sagtenee -

St et arassagteny
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The spectral mapping: Data as elements of v2, v3
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s
%
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The algorithm

Spectral clustering in a nutshell

weighted similarity matrix transition matrix first K eigenvectors
graph P of P
—r.—r LR ==K clusters
normalize spectral  clustering
n vertices to rows mapping in RK
cluster;
observations
arg Q@M@Q n x n, symmetric
similarities

$,>0
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The algorithm

Spectral clustering

An algorithm based on [?] and [?].
Spectral Clustering Algorithm
Input Similarity matrix S, number of clusters K
@ Transform S: Set D; = Zj’-’:l Sjj, j = 1: n the node degrees.
Form the transition matrix P = [P,lj],’.‘;.:1 with

Pj < S;/D;, fori,j=1:n

@ Compute the largest K eigenvalues A\1 =1 > Xy > ... > Ak and eigenvectors vy, ...vk of P.

© Embed the data in principal subspace Let V =[vav3 ... vg] € R"™K x; < i-th row of V.
© (orthogonal initialization) Find K initial centers by

@ take pg randomly from xi, ... X,
@ fork=2,...Kset uy = argminxi max, /s /,LZ-,X,'.

© Run the K-means algorithm on the “data” x;., starting from the centers ..
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The algorithm

Properties of spectral clustering

o Arbitrary cluster shapes (main advantage)
o Elegant mathematically
@ Practical up to medium sized problems
o Running time (by Lanczos algorithm) O(nk)/iteration.

o Works well when K known, not too large
estimating K [?]
o Depend heavily on the similarity function (main problem)
learning the similarities [?],[?].[?].[?]
@ Outliers become separate clusters (user must adjust K accordingly!)
@ Very popular, many variants which aim to improve on the above
Diffusion maps [?]: normalize the eigenvectors Af vk
@ Practical fix, when K large: only compute a fixed number of eigenvectors d < K. This
avoids the effects of noise in lower ranked eigenvectors
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Affinity propagation

Idea Each item i € D finds an exemplar item k € D to “represent” it

Affinity Propagation is to spectral clustering what Mean Shift is to K-means

number of exemplars not fixed in advance

quantities of interest

similarities s;;, i # j (given)

availability aj of k for i = how much support there is from other items for k to be an exemplar
re,sponsibility rix that measures how fit is k to represent i/, as compared to other possible candidates

diagonal elements s;; represent self-similarities

@ larger sjj = more likely i/ will become an exemplar = more clusters
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Affinity Propagation

Affinity Propagation Algorithm [?]

Input Similarity matrix S = [sy]5 _;, parameter A = 0.5
Iterate the following steps until convergence

Q ay < Ofori,k=1:n

Q forall i

@ Find the best exemplar for i1 s™ < maxk(sik + aik),
A} <+ argmax (sj + aj) (can be a set of items)

@ for all k update responsibilities
sk —s*, ikaAl-*
Fik = Sik — maxys g ax (Sik + aik)  otherwise
@ for all k update availabilities
0 aw <+ Xiulrils where [ri]y = ric if ric > 0 and 0 otherwise.
@ for all i, ag < min{0, r + Zi’#i.k[ri’k]+}
Q Assign an exemplar to i by k(i) < ar8Max(ry, + ajy.)
k
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