Lecture VIII – Link Analysis

Marina Meilă

Department of Statistics University of Washington

STAT 548/CSE 547 Winter, 2022

STAT 548/CSE 547Winter, 2022

ヘロト ヘロト ヘヨト ヘヨト

E 99€

1/

Pinding important pages on the web. PageRank

Personalized PageRank

Graph Data: Social Networks

Facebook social graph

4-degrees of separation [Backstrom-Boldi-Rosa-Ugander-Vigna, 2011]

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

э

イロト 不得 トイヨト イヨト

Graph Data: Media Networks

Connections between political blogs Polarization of the network [Adamic-Glance, 2005]

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

STAT 548/CSE 547Winter, 2022 4

イロト イポト イヨト イヨト

Graph Data: Information Nets

5/

Graph Data: Communication Nets

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

イロト イロト イヨト イヨト 二日

STAT 548/CSE 547Winter, 2022

6 /

Graph Data: Technological Networks

Seven Bridges of Königsberg

[Euler, 1735] Return to the starting point by traveling each link of the graph once and only once.

イロト イボト イヨト イヨト

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

STAT 548/CSE 547Winter, 2022 7/

Web as a Directed Graph

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

10

8 /

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … のへで

STAT 548/CSE 547Winter, 2022

Broad Question

- How to organize the Web?
- First try: Human curated Web directories
 - Yahoo, DMOZ, LookSmart
- Second try: Web Search
 - Information Retrieval investigates: Find relevant docs in a small and trusted set
 - Newspaper articles, Patents, etc.
 - <u>But:</u> Web is huge, full of untrusted documents, random things, web spam, etc.

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

11

9/

Web Search: 2 Challenges

2 challenges of web search:

- (1) Web contains many sources of information Who to "trust"?
 - Trick: Trustworthy pages may point to each other!
- (2) What is the "best" answer to query "newspaper"?
 - No single right answer
 - Trick: Pages that actually know about newspapers might all be pointing to many newspapers

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

10

Ranking Nodes on the Graph

- All web pages are not equally "important" www.joe-schmoe.com vs. www.stanford.edu
- There is large diversity in the web-graph node connectivity. Let's rank the pages by the link structure!

Hubs and authorities

J. Leskovec, A. Rajaraman, J. Ullman: Mining of Massive Datasets, http://www.mmds.org

11

PageRank idea

nitions

- A asymmetric adjacency matrix, $A_{ij} = 1$ is link $i \rightarrow j$
- $d_i = \sum_i A_{ij}$ out-degree of page *i*
- $r_i > 0$ the importance/prestige of page *i* (higher is better)
- PageRank principle: the importance of page j comes from the pages pointing to it

$$r_j = \sum_i A_{ij} \frac{r_i}{d_i} \tag{1}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 ・ のへで

13

STAT 548/CSE 547Winter, 2022

• Division by d_i because prestige of *i* is equally divided between the pages *i* points to

PageRank idea

nitions

- A asymmetric adjacency matrix, $A_{ij} = 1$ is link $i \rightarrow j$
- $d_i = \sum_i A_{ij}$ out-degree of page *i*
- $r_i > 0$ the importance/prestige of page *i* (higher is better)
- PageRank principle: the importance of page j comes from the pages pointing to it

$$r_j = \sum_i A_{ij} \frac{r_i}{d_i} \tag{1}$$

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ● ○ ○ ○ ○ ○ STAT 548/CSE 547Winter, 2022

13

• Division by d_i because prestige of i is equally divided between the pages i points to

• In matrix form
$$A \in \{0,1\}^{n \times n}$$
, $r \in [0,\infty)^n$

$$P = D^{-1}A \quad \text{transition matrix} \quad r = P^T r \tag{2}$$

• r is eigenvector of P^T !

Markov chains recap

- P transition matrix, is stochastic matrix
- P1 = 1 hence 1 is (left) e-vector with e-value $\lambda_1 = 1$
- $\lambda_1 = 1$ is the largest e-value of P
- What is the left e-vector corresponding to $\lambda_1 = 1$?
- $\pi^T = \pi^T P$ the stationary distribution of P
- π always exists, always $\pi \succ 0$, π unique when P ergodic
- Mixture of random walks P, P', with probability $\beta \in (0, 1)$: $P^{mix} = \beta P + (1 \beta)P'$

イロト イヨト イヨト イヨト

STAT 548/CSE 547Winter, 2022

3

Algorithms for finding r

- Eigen-solver, firnd 1st principal e-vector of P^T
- Power iteration

Input A Init $r_i = 1/n$ Ocompute $d_{1:n}$ Repeat until convergence $r_i \leftarrow r_i/d_i$ for all $i \mathcal{O}(n)$ $r_j \leftarrow \sum_{i \to j} r_i$ for all $j \mathcal{O}(|\mathcal{E}|)$

イロト イヨト イヨト イヨト

E 99€

Problem with directed graphs

- strongly connected component (SCC)
- ergodic set

Teleporting Random Walk

- Solution: have a single SCC
- Teleporting random walk transition matrix

$$P^{tele} = \beta P + (1-\beta) \frac{1}{n} \mathbf{1}_{n \times n}$$

イロト イヨト イヨト イヨト

STAT 548/CSE 547Winter, 2022

17

with $\beta \in (0, 1)$ (in practice $\beta = 0.8 - 0.9$)

- From each node *i* transition
 - on an outgoing edge uniformly at random, w.p. β (original r.w.)
 - · to an arbitrary page, selected uniformly at random
- Sinks are special case, $\beta = 0$ for sink.
- Power iteration (simplified)

(a)
$$r \leftarrow \beta P^T r$$
 (original Power Iteration, rescaled by β)
(a) $r \leftarrow r + \frac{1-\beta}{n}$

Prestige of pages w.r.t a topic

- Problem: find pages most relevant to a topic
- Define topic by (small) set S of known pages on the topic
- S is seed set
- Teleporting Uniform(S) instead of Uniform(all pages)
 - Uniform(S) can be replaced with other distribution over S

$$P^{PPR} = \beta P + (1-\beta) \frac{1}{|S|} \mathbf{1}_{[S]}$$

イロト 不得 トイヨト イヨト

STAT 548/CSE 547Winter, 2022

э

18

Power iteration works similarly

Example PPR vs PageRank

Suppose S =	{1} ,	β=	0.8
-------------	--------------	----	-----

S={1}, β=0.90: r=[0.17, 0.07, 0.40, 0.36] **S={1}, β=0.8:** r=[0.29, 0.11, 0.32, 0.26] **S={1}, β=0.70:** r=[0.39, 0.14, 0.27, 0.19]Marina Mellä (Statistica)

Node	Iteration				
	0	1	2	stable	
1	0.25	0.4	0.28	0.294	
2	0.25	0.1	0.16	0.118	
3	0.25	0.3	0.32	0.327	
4	0.25	02	0.24	0 261	

 S={1,2,3,4}, β=0.8:

 r=[0.13, 0.10, 0.39, 0.36]

 S={1,2,3}, β=0.8:

 r=[0.17, 0.13, 0.38, 0.30]

 S={1,2}, β=0.8:

 r=[0.26, 0.20, 0.29, 0.23]

 S={1}, β=0.8:

 r=[0.29, 0.11, 0.32, 0.26]

E ∽ Q ℃ STAT 548/CSE 547Winter, 2022 19

