STAT 534 Homework 5

Due May 20, 2019
(©Marina Meila
mmp@stat.washington.edu

Problem 1 — Data structures for disjoint sets — Part II

You will write a program in the file that applies the DSF functions to the statisticiansA-M.txt.

Submission details Write a Python program called hw5Spb1l.py that imports the code from
Homework 4 Problem 1 (function definitions) as a module. Submit both your module and
hw5Spb1l.py, but do not submit as a compressed format (.zip, .rar, etc.). The filename of your
module should be <last name><first name> disjointsets.py, where your first and last
name are as they appear on Canvas and the file name is all lowercase. For example, if your
name is “John Smith,” but your name on Canvas is “Jonathan Smith,” then the filename for
your module should be smithjonathan disjointsets.py
Hence, the first line of your hw5Spb1.py may look something like:

from smithjonathan disjointsets import *
or
import smithjonathan disjointsets as ds
Failing to follow the above instructions may result in losing some or all of the points for this
problem.

a.In hw5Spbl.py, implement the following:

1. Read in to Python the (non-truncated) last names from the file “statisticiansA-M.txt”.

2. Assign each name a number from 0 to n — 1, where n = 393 is the total number of unique
statisticians in the file. We refer to this as the ID ¢ of the statistician.

3. Using the ID’s of each statistician as the node labels, initialize a DSF using make_set
operations, with n nodes corresponding to the n statisticians.

4. Write a function find_set_statistician that:

(i) Takes the last name of a statistician as input

(ii) Finds the node s corresponding to the input name. If there is no node corresponding
to the input name, returns null

(iii) Finds the representative r of node s, if s not null.

(iv) Returns the last name of the statistician corresponding to r. If s is null returns
’None”’.

5. Read in the list of edges from file hwb-statisticians-edges.dat, which contains a pair
of ID’s in plain text, on each line.

6. Use these edges to perform the following operations on the DSF initialized in step 3
union(x1, yi)
union(x2, y2)

union(xm, ym)

7. At the end of your program, write the following test cases exactly as they appear:
print(find _set_statistician(’Blackwell’))
print(find set statistician(’Bottou’))
print(find set_statistician(’Brad’))
print(find _set_statistician(’Breslow’))
print(find _set_statistician(’Wellner’))
print(find_set_statistician(’Laird’))
print(find set statistician(’Fisher’))
print(find set statistician(’Holmes’))

b. Describe how you implemented the Disjoint Set Forest (DSF) data structure in a the class
Node. E.g. with an array, a dictionary, and what do the entries represent (1-2 paragraphs)?

Describe in enough detail that we can evaluate if the functions MAKE-SET, FIND-SET, UNION
operating on your data structure achieve the asymptotic running time of their pseudocode ver-
sions, assuming that the code will be required to perform a sequence of FIND-SET and UNION
calls with this DSF. Small constant differences can be ignored.

Problem 2 — Edit distance between two strings Problem 15-3 CRLS page 365 modified as
follows:

The questions in CRLS 15-3 are reformulated here to make them more precise and to give a
few hints about their solutions. Consider the original questions a, b in CRLS replaced by the
questions below.

Given two sequences x[1...m], y[l...n| and a set of transformation-operation costs, the edit
distantce from x to y is the cost of the least expensive operation sequence that transforms x to

Y.

Use the following costs in your answers to b, c, d.

copy 0
replace 1
delete 2
insert 2
twiddle 1
kill 3

a. First, describe the optimality structure of the problem: if we know an optimal solution to the
string edit distance (SED) problem, then are there any parts of the solution that are optimal
solutions to SED subproblems? Give an analog of Theorem 15.1 and explain why it should hold.

b. SED without twiddle: Give a dynamic programming algorithm (in pseudocode) that solves the
SED problem and prints an optimal operation sequence, in the case when the twiddle operation
is not an option. Be sure to also explain your idea in words. What are the running time and
the space requirements of your algorithm (in O notation) as a function of m,n? [Hint: This
problem is very similar to the LCS problem. You will have to set up and fill a pair of tables
similar to tables ¢, b in the LCS algorithm. In the following, I will refer to the tables associated
to the SED algorithm as ¢ and b.]

c. SED with twiddle: Now modify the algorithm you obtained in b to include the option
of performing a twiddle. What are the running time and space requirements of the modified

algorithm?

d. Demonstrate the algorithm in c. in the case SILK — SICKLE:

e construct and fill the ¢, b tables

e list the sequence of operations and the total cost

e. Extra credit Explain how to cast the problem of finding an optimal alignment described in
CRLS pp 366-367 as an edit distance problem using a subset of the transformation operations
copy, replace, delete, insert, twiddle and kill. Assign each operation the cost that you’ll find
necessary.

