STAT 534 Homework 6

Out Thursday, May 30, 2019
Due Monday, June 10, 2019 (noon)
© Marina Meilă
mmp@stat.washington.edu

Problem 1 - Gibbs sampling

Submit your code through the homework web site. Do all the implementations in one file. For questions $\mathbf{b}, \mathbf{c}, \mathbf{e}, \mathbf{f}, \mathbf{g}$ provide the answers on paper.

Consider the following 16 nodes Markov network

where all variables are binary, $x_{i} \in\{ \pm 1\}$ and all clique potentials are of the form

$$
\phi_{i j}\left(x_{i} x_{j}\right)= \begin{cases}1 & \text { if } x_{i}=x_{j} \\ e^{-2 J} & \text { if } x_{i} \neq x_{j}\end{cases}
$$

a. Implement Gibbs sampling for this Markov network, by sampling variables $1,2,3, \ldots 16$ in turn.
b. Initialize $x_{1: 16}=1$. Run the Gibbs sampling algorithm for 100 iterations (a cycle in which all variables have their state sampled once is consindered an iteration) for $J=0.2$ and $J=1$. Plot the states of the variable vector over the iteration (see example below).
c. Calculate the mean of x_{1}, x_{2}, x_{3} over the 100 iterations.
d. Now implement Gibbs sampling for the same Markov network, by sampling the groups of variables $1,3,6,8,9,11,14,16$, and $2,4,5,7,10,12,13,15$ alternatively.
e. Repeat \mathbf{b}, \mathbf{c} for the new sampling procedure.
f. Because states x and $-x$ have the same probability, the true marginal of any singe variable x_{j} in this model is $(1 / 2,1 / 2)$, with expectation 0 . Compare the numerical results of the two algorithms with the true expectations or true marginals; does it appear that one algorithm converges faster than the other?

Example: Below is displayed the state $x_{1: 16}$ over 50 iterations of a Gibbs sampling algorithm, with ascii characters.

Alternatively, you can display the same 50×16 states
as a black and white image. Either way is satisfactory, as long as the patterns in the state-time are visible enough.

