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Accept/Reject Methods

Sample from f (x) that is available up to a normalizing constant. Assume
we can find another distribution g(x) we know how to sample from such
that there exists a constant M > 0 with

f (x) ≤ Mg(x).

Rejection Sampling

(a) Draw x ∼ g(·).

(b) Draw U ∼ Uniform(0, 1). If U ≤ f (x)
Mg(x) , we accept and return x .

Otherwise we go back to step (a).

This simulates from f (x) because

P(Accept) =

∫
P(Accept|X = x)g(x)dx =

∫
f (x)

Mg(x)
g(x)dx =

1

M
,

P(x |Accept) =
P(Accept|x)P(x)

P(Accept)
=

f (x)

Mg(x)
g(x)M = f (x).
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Accept/Reject Methods
Example: Conditional distrobutions

Let X ∼ g(x). We want to simulate from the truncated distribution:

f (x) = g(x) · I{x∈A}.

For example, take A = [c ,∞). Then {x ∈ A} = {x > c}. We have

f (x)

g(x)
=

1

I{x∈A}
= M.

Crude accept/reject:

1 Generate X ∼ g(x) until X ∈ A.

2 Return X .

This is very inefficient for simulating truncated Normal random variables.
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Accept/Reject Methods
Example: Simulate from Beta(α1, α2)

f (x) =
1

B(α1, α2)
xα1−1(1− x)α2−1, 0 ≤ x ≤ 1,

has maximum at xα1,α2 = α1−1
α1+α2−2 . Take M = f (xα1,α2). Then

f (x) ≤ Mg(x),

with g(x) = 1. Accept/Reject sampling is:

Generate U1,U2 ∼ Uniform(0, 1) until M · U2 ≤ f (U1).

Return U1.
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Accept/Reject Methods
Example: Normal from Double Exponential

The double exponential has density g(x) = 1
2 exp−|x |. We generate

Y ∼ Exp(1) and U ∼ Uniform(−0.5, 0.5). Then Y ∗ = sign(U) ·Y ∼ g(x).
The ratio between the Normal(0, 1) density and g(x) is

f (x)

g(x)
=

√
2

π
exp

(
−1

2
x2 + |x |

)
≤
√

2e

π
≈ 1.3155 = M.

The rejection test is

U > exp

(
−1

2
x2 + |x | − 1

2

)
= exp

(
−1

2
(|x | − 1)2

)
.

The sampling algorithm goes as follows:
1 Generate U1,U2,U3 ∼ Uniform(0, 1).
2 Take X = − log(U1).
3 If log(U2) > −1

2(|x | − 1)2, go to Step 1.
4 If U3 ≤ 0.5, take X ← −X .
5 Return X .
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The Metropolis-Hastings Algorithm

Want to sample from X ∼ f (x). Assume we know how to sample from a
conditional density q(·|x) such that f (y)/q(y |x) is known up to a
constant independent of x . The M-H algorithm produces a Markov chain
with stationary distribution P(X ≤ x) as follows:

Given x (t), generate Yt ∼ q(y |x (t)).

Take

X (t+1) =

{
Yt , with probability ρ(x (t),Yt),

x (t), with probability 1− ρ(x (t),Yt).

where

ρ(x , y) = min

{
1,

f (y)

f (x)
· q(x |y)

q(y |x)

}
.

The independent M-H algorithm is obtained for a proposal independent of
the current state, i.e. q(y |x) = q(y).
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The Metropolis-Hastings Algorithm
Example: generating discrete random variables

Let X be a r.v. that takes values {1, 2, . . . ,K} with probabilities
pi = P(X = i). An independent M-H algorithm starts with some arbitrary
value i0 and uses a uniform proposal q(i) = 1/K , 1 ≤ i ≤ K . If the chain
is currently at i (t), draw i∗ uniformly from {1, 2, . . . ,K} . Set i (t+1) = i∗

with probability

min{pi∗/pi (t) , 1}.

Otherwise, set i (t+1) = i (t).
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The Metropolis-Hastings Algorithm
Example: the Bayesian Probit Model

Assume a flat prior π(β) ∝ 1. The posterior distribution of the coefficients
β of the probit model is proportional with the likelihood

π(β|y ,X ) ∝
n∏

i=1

Φ((x i )Tβ)yi [1− Φ((x i )Tβ)]1−yi ,

A M-H algorithm for simulating from π(β|y ,X ) goes as follows:

Initialization: compute the MLE β̂ and the asymptotic covariance
matrix Σ̂ of β̂.

Set the starting value at the MLE: β(0) = β̂.

At iteration t ≥ 1 do
1 Generate β̃ ∼ Nk(β(t−1), τ 2Σ̂).
2 Calculate ρ(β(t−1), β̃) = min{1, π(β̃|y ,X )/π(β(t−1)|y ,X )}.
3 With probability ρ(β(t−1), β̃), take β(t) = β̃. Otherwise take
β(t) = β(t−1).
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The Two-Stage Gibbs Sampler

Assume that the random variables X and Y have a joint distribution with
density fX ,Y (x , y). The Hammersley-Clifford Theorem says that the
conditional densities fY |X (y |x) and fX |Y (x |y) uniquely define the joint
density of X and Y :

fX ,Y (x , y) =
fY |X (y |x)∫ [

fY |X (y |x)/fX |Y (x |y)
]
dy

The two-stage Gibbs sampler generates a Markov chain (Xt ,Yt) as follows:

Choose a starting value X0 = x0.

At iteration t ≥ 1 do
1 Generate Yt ∼ fY |X (·|xt−1).
2 Generate Xt ∼ fX |Y (·|yt).

The sequences (X (t))t , (Y (t))t are Markov chains with stationary
distributions fX (x) =

∫
fX ,Y (x , y) dy and fY (y) =

∫
fX ,Y (x , y) dx .
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The Two-Stage Gibbs Sampler
Example: bivariate Normal

Let

(X ,Y ) ∼ N2

((
0
0

)
,

(
1 ρ
ρ 1

))
.

Given yt , the Gibbs sampler generates:

1 Xt+1|yt ∼ N(ρyt , 1− ρ2).

2 Yt+1|xt+1 ∼ N(ρxt+1, 1− ρ2).
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The Multi-Stage Gibbs Sampler

Sampling from the joint distribution of p variables based on their full
conditionals f1, . . . , fp of each variable given the rest proceeds as follows:

Start with x (0) = (x
(0)
1 , . . . , x

(0)
p ).

At iteration t ≥ 1 do
1 Generate X

(t+1)
1 ∼ f1(x1|x (t)2 , . . . , x

(t)
p ).

2 Generate X
(t+1)
2 ∼ f2(x2|x (t+1)

1 , x
(t)
3 , . . . , x

(t)
p ).

...
3 Generate X

(t+1)
p ∼ fp(x2|x (t+1)

1 , . . . , x
(t+1)
p−1 ).
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The Multi-Stage Gibbs Sampler
Example: multivariate Normal

Let

(X1,X2, . . . ,Xp)T ∼ Np (0, (1− ρ)Ip + ρJp) ,

where Ip is the p × p identity matrix and Jp is the p × p matrix with all
elements equal to 1. This is the equicorrelation model, i.e.

Cor(Xi ,Xj) = ρ, for any 1 ≤< j ≤ p.

The Gibbs sampler proceeds by sequentially sampling from each
conditional distribution

Xi |x−i ∼ N

(
(p − 1)ρ

1 + (p − 2)ρ
x̄−i ,

1 + (p − 2)ρ− (p − 1)ρ2

1 + (p − 2)ρ

)
.

where x̄−i is the mean of x−i = (x1, . . . , xi−1, xi+1, . . . , xp).
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The Multi-Stage Gibbs Sampler
Example: the autoexponential model

Let Y1,Y2,Y3 be random variables taking positive real values with joint
density

f (y1, y2, y3) ∼ exp{−(y1 + y2 + y3 + θ12y1y2 + θ13y1y3 + θ23y2y3)}.

The full conditionals are exponential:

Y1|y2, y3 ∼ Exp(1 + θ12y2 + θ13y3),

Y2|y1, y3 ∼ Exp(1 + θ12y1 + θ23y3),

Y3|y1, y2 ∼ Exp(1 + θ13y1 + θ23y2).
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