
Chapter 7

Non-parametric Density

Estimation

The objective is to estimate a probability density fX over the real line (or a
subset thereof) from a set of points D = {x1, x2, . . . xn}.

7.1 ML density estimation

The likelihood of D is

L(fX |D) =
n

∏

i=1

fX(xi) (7.1)

and the log-likelihood

l(fX |D) =

n
∑

i=1

log fX(xi) (7.2)

Maximizing the above over all functions yields (without proof)

f̂ML
X =

1

n

n
∑

i=1

δxi
(7.3)

where δx̄ is the Dirac “function”

δx̄ =

{

∞ for x = x̄
0 otherwise

(7.4)

By convention
∫ ∞

−∞
δx(t)dt = 1 (7.5)
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∫ ∞

−∞
δx(t)g(t)dt = g(x) (7.6)

Hence, the ML estimate of f is a weighted sum of δ spikes placed at the sampled
points. Such an estimate is counterintuitive - we know that most densities aren’t
spikes! It is also completely impractical: if we used the model f̂X for prediction
then we would predict that all the future samples from fX will lie at the locations
x1, x2, . . . xn and nowhere else!

Therefore, instead of maximizing the likelihood over all possible density func-
tions we will impose some restrictions corresponding to our intuition of a “re-
alistic” density. One way to do that is to decide on a model class (e.g uniform,
normal) and find the ML estimate in that class. This is called parametric den-
sity estimation. The alternative is the non-parametric way. We will study two
non-parametric models: the histogram and the kernel density estimator.

7.2 Histograms

To construct a histogram, we partition the domain of the distribution into nb

bins of equal width h. Then we count the number of points ni, i = 1, . . . nb in
each bin and we define fX to be equal to the ni

nh over bin i. Note that this way
fX is a piecewise constant function that integrates to 1. The density is zero in
all bins that contain no points.

Figure 7.1 shows examples of histograms. The choice of the bin width h influ-
ences the aspect of the histogram and its variance w.r.t to the sample. This is
an illustration of the bias-variance trade-off that will be discussed further on.
Another source of variation in a histogram is the choice of bin origins. If all
bins are shifted by an amount ∆ < h, the numbers ni may change, because
bin boundaries are shifted. The latter variability is entirely due to artefacts -
having nothing to do either with the data or with other reasonable assumptions
about nature. It is an example of problem to be avoided by a “good” statistical
model. The next section will show a class of models which is clearly superior
to histograms in all respects. Therefore, histograms are not recommended and
should not be trusted except with caution, for a very qualitative look at the
data.
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Figure 7.1: Three histograms (note that they are unnormalized, i.e don’t sum
to 1). The first two are over data sets that differ in only 1 point. The third is
from the first data set but has twice as many bins.

7.3 Kernel density estimation

This method constructs the estimate of fX by placing a “bump” at each data
point and then summing them up.

fX(x) =
1

nh

n
∑

i=1

k(
x− xi

h
) (7.7)

The “bump” function k(.) is called a kernel and the parameter h is the kernel
width. Figure 7.3 shows three typical kernels. A kernel should always be non-
negative and satisfy the following conditions

1.
∫∞
−∞ k(x)dx = 1 integrate to 1

2.
∫∞
−∞ xk(x)dx = 0 “centered” at 0

3.
∫∞
−∞ x2k(x)dx < ∞ “finite variance”

Usual kernels are also symmetric around 0, have a maximum at 0 and decrease
monotonically away from the origin. If a kernel is 0 outside a neighborhood
of the origin, then we say that it has compact support. The uniform and the
Epanechnikov kernel have compact support, while the Gaussian kernel doesn’t.
The Epanechnikov kernel has optimal variance (something we’ll discuss next).

Sometimes, the last condtion is replaced with
∫∞
−∞ x2k(x)dx = 1. This condi-

tion insures that different kernels are comparable w.r.t width.

Note that f̂X defined above is a ML estimate. If we model fX by summing
n bumps of fixed shape and width and maximize the likelihood of the data
w.r.t the bumps positions, then, if the width of the bumps is small enough, the
optimal placement centers each bump on a data point.
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Figure 7.2: Kernel density estimation. A kernel is placed on each data point;
the density is (proportional to) the sum of all kernels.

What happens if we also allow the kernel width to vary? Decreasing h will
have the effect of increasing the likelihood. It will also make the estimated
density look “spikier”. The “optimal” h will be zero in which case the original,
unconstrained ML solution with its n δ spikes is recovered. This shows that
kernel density estimation is ML estimation with a restriction on how “spiky”
we allow our solution to be.

Another way of looking at kernel density estimation is as a convolution: the
kernel density estimator represents the convolution of the kernel with a set of
spikes placed at the data points.

f̂X =
1

h
f̂ML

X ∗ k (7.8)

Choosing a kernel A compactly supported kernel has computational advan-
tages: k(x) being zero outside a finite interval we will only need to compute the
non-zero terms in 7.7. If we assume that the original density is defined only on
an interval of the real axis (such an fX is called compactly supported), then it
also makes sense to choose a kernel with compact support.

On the contrary, the Gaussian kernel assures that f̂X is non-zero everywhere.
To compute such an f̂X at one point x we have to evaluate k in n points, which
can be quite a burden if the data set is large.

The exact shape of the kernel is not critical in practice. Therefore in the next
examples we shall only use the Gaussian kernel. Far more important than the
kernel shape is the choice kernel width h that controls the bias-variance trade-
off.
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Figure 7.3: Examples of kernel functions: (a) the square kernel; (b) the Epanech-
nikov kernel2; (c) the Gaussian kernel. The area under each kernel equals 1.
Note that they have different widths and different maximum heights; therefore
we expect different amounts of smoothing for the same h.

7.4 The bias-variance trade-off

Bias. The bias refers to the capacity of a family of functions (in this case
the family of kernel density estimators with a given kernel k and a given h) to
fit the data. The better the fit to the data, the lower the bias. For example,
estimating the density with delta spikes models the data perfectly, hence has 0
bias. On the other hand, if we use a kernel density estimator with h large, then
the bumps are wide and their peaks are flat. No matter if the original density
was flat or not, the estimator will look flat. Hence densities that have sharp
peaks can’t be approximated well with a large h. We say that an estimator
with large h is biased toward slowly varying densities. In the case of the kernel
density estimators, the bias increases with h.

Because h controls the smoothness of the resulting density estimate, is also
called a smoothing parameter. Large bias toward some kind of solution implies
potentially large estimation errors, i.e large differences between our solution and
the “true” density that generated the data. Therefore we usually want to have
low bias.

Variance measures how much the estimated density changes due to the ran-
domness of the data set. The maximum variance is attained for h = 0 - the
unconstrained ML estimate. Indeed, if the data set contains a data point at a
then the density there is ∞; if we draw another sample which doesn’t contain
a data point exactly at a, then the density in a will be 0. A variation from
infinite to 0 due to an infinitesimal change in the data! As h becomes larger,
the density becomes less sensitive to small perturbations in the data, therefore
the variance of the estimate will decrease with h.
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Since we want an estimated density that fits well all the possible data sets, a
low variance is what we should aim for.

Considering now what we know about bias, we see that minimizing bias (which
means reducing h) and minimizing variance (by increasing h) are conflicting
goals. This is the bias-variance trade-off: finding a value of the kernel width h
that is reasonable both for bias and for variance.

The effect of the sample size n. Intuitively, it is harder to fit more data points
than less data points. Thus, the bias will in general not decrease when the
sample size n increases. For the case of kernel density estimates, the bias doesn’t
change with n. The variance however will decrease with n, therefore it is at our
advantage to obtain as much data as possible. With enough data to compensate
for the variance, we can afford using a small h to reduce the bias as well. In
conclusion, a larger sample size n has a beneficial effect on the overall quality
of the estimate.

How should h be changed with n? Theoretical studies show that the optimal
kernel width should be

h ∝ 1

n
1

5

(7.9)

Example 7.1 Traffic on the I-90 bridge

Assume that we have placed a sensor on the I-90 bridge that records the moment
a car passes in front of it. The data file fig h7 traffic.dat is a (fictitious!)
recording of such data over 24 hours. The same data is plotted in figure 7.5
on the time axis (from 0 to 24 hrs). We will visualize the it by constructing a
kernel density estimator.

The figure 7.6 shows the density estimate using 3 different kernels with the same
width h = 1. The rectangular kernel is easy to recognize by its ruggedness, the
other two plots that are very close together are the Gaussian kernel and the
Epanechnikov (call it E.!) kernel. Note two things: First, the Gaussian and E.
kernels give almost indistinguishable estimates. It doesn’t really matter which
one we use. The rectangular kernel, at this h, produces a more rugged picture.
While for the two other kernels h = 1 seems a good kernel width, for the
rectangular kernel we may want to use a larger h.

After experimenting with the three kernel types, we decide to use one of the
smooth kernels, and the choice falls onto the E. kernel. The next plots show
the density obtained with this kernel for various kernel widths. At the smallest
kernel width, h = 0.3 the density has many peaks and valleys. Even without
having seen the true f , we may assume that traffic doesn’t vary that wildly.
The estimate for h = 1 is much smoother and on it two peaks - corresponding
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Figure 7.4: The effect of bias, variance and the sample size. The first row plots
density estimates with h = 0.02 for 3 samples from the same distribution (a
uniform over [0, 1]). The first two samples have size n = 12, the third has
n = 1200. The density estimate is concentrated at the data points (thus the
bias is low); this is beneficial for the large sample, but produces high variance
for small samples. The second row shows density estimates from the same three
data sets for h = 0.17. Now the three curves look very similar – the variance
is low. The estimates obtained from the small data sets are much closer to the
true distribution now. But this h is too large for the large data set, resulting
in a worse estimate then previously. Last, note also that more data points are
better than less data points in both cases.
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Figure 7.5: The traffic data set.
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Figure 7.6: Density estimates of the traffic data with three different kernels:
square, Epanechnikov and Gaussian. The kernel width is h = 1 in all cases.
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Figure 7.7: Density estimates of the traffic data with the same kernel at three
different kernel widths.

to the morning and afternoon rush hours - appear clearly. This plot can help
anyone trying to learn something about the traffic see the global pattern (in
this case two intervals of intense traffic) amids the “sampling noise” that the
small h estimate failed to suppress. Thus a density estimator is a tool in data
visualization. The last plot, for h = 3 shows only one large peak; the kernel
width is too large, smoothing out not only the noise but also the structure in
the data.

The density estimate can be used also for prediction: How many cars will cross
the I-90 bridge tomorrow between noon and 1 pm, if the total number of cars
that cross it in a day is 10,000? The answer is

10, 000

∫

13.00

12.00

f(t)dt ≈ 535 (7.10)

In the above example, h = 1 has been chosen by visually examining the plots.
Although “the visual appeal” method is quite popular, one can do something
more principled.

7.5 Cross-validation

The idea of cross-validation is to “test” the obtained model on “fresh” data,
data that has not been used to construct the model. Of course, we need to
have access to such data, or to set aside some data before building the model.
In our imaginary example, we are lucky to be given “next day’s data”, another
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Figure 7.8: Likelihood (right) and log-likelihood of the test set of traffic data
for different kernel sizes h. The optimum is at h = 1.

sample from the same distribution (this is the file fig h7 traffic next.dat).
This data set is called test data or hold out data, in contrast to the data used
to build the model which is called training data.

We will “test” the model on the holdout data. If the model is accurate, it
must be able to predict well unseen data coming from the same distribution.
In statistics terms, the unseen data should have high likelihood. Thus, the
log-likelihood of the test data

ltest(h) =
∑

x∈Dtest

log fh(x) (7.11)

=
∑

x∈Dtest

log





1

|D|h
∑

y∈D
k

(

x− y

h

)



 (7.12)

is a measure of the goodness of our estimator. In the above equation, we have
indexed the density by h the kernel width. Now all we need to do is to is to
compute fh and ltest for a sufficiently large range of h. This was done and the
results, both as likelihood and as log-likelihood are shown in figure 7.8. The
maximum value of the (log-)likelihood is attained for h = 1. This is the value
that predicts the future data best, confirming our intuition.

Now at least having made all the choices we can allow ourselves to take a look
at the “true” density that I used to generate this sample. Figure 7.9 depicts it
along with the sample (n = 100).
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Figure 7.9: The data and the true density (left) and cumulative distribution
function (right).

7.5.1 Practical issues in cross-validation

1. The range of h to be tested. If the kernel is finitely supported, then,
once h is smaller than the smallest distance between two data points, each
point is under a separate bump and decreasing it further will only create
larger 0 density regions between the data. So, this is a good lower limit
for h. For the upper limit, a good choice is an kernel width of about the
range of the data xmax − xmin, or a fraction of it, e.g 1/2(xmax − xmin).

2. The size of the validation set Dtest. If the validation set is too small,
then the value of ltest will have high variance (i.e will change much if we
pick another validation set out of the original data set). So, our decision
based on it will be prone to error. But if ntest = |Dtest| is large, then we
may be left with too little data for building the model.

What is recommended depends on the amount of data available. If data
is abundant (several thousands or more data points) then a ntest of about
1000 should suffice; the rest of the data should be used for constructing
the model. If the available data set is medium (several hundreds), then it
is recommende to split it into a ratio of ntest

n ≈ 1

3
. . . 1

2
.

For smaller data sets, a procedure called K-fold cross validation is used.
The whole data is divided at random into equal sized sets D1, . . .DK .
Then, for k = 1, . . . K, Dk is used as a validation set, while the rest of the
data is used as training set. The log-likelihood lk(h) of Dk for the k-th
model is calculated. The final score for each h is equal to the arithmetic
mean of lk, k = 1, . . . K. In practice, the values of K range from 3–5 to n.
If K = n the method is called leave-one-out cross validation. You can
notice that, the larger the value of K, the more credible are the results
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of the procedure (why?). The downside is that computational costs also
grow with K as follows. The number of kernel computations to evaluate
a density estimate from n′ points on ntest points is n′ntest. Therefore, to
perform K-fold CV we need

N = K
( n

K
× (K − 1)

n

K

)

= n2(1 − 1/K) (7.13)

kernel evaluations.

3. Other sanity checks include looking at the shape of the density estimate
for the chosen h, or even at how this shape changes with h.

Note that in spite of its conceptual elegance, cross-validation is not a completely
error-proof method. For example, it can be shown that hCV 6→ 0 if the target
density f has infinite support and decays exponentially or slower. Also, outliers
can cause problems in cross-validation.


