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mmp@stat.washington.edu

1 What is a Markov Random Field?

An arbitrary undirected graph can be seen as encoding a set of independencies.
Let V be the set of nodes of G, each representing a random variable, and E the
set of edges. Denote n(A) = the neighbors of variable A.

Then the local Markov property is expressed as

A ⊥ everything else | n(A)

Now we will characterize the set of distributions that satisfy the Local Markov
Property w.r.t. a graph G. For this, we need a new definition. A clique of a
graph G is a set of nodes C ⊆ V which are fully connected in G (i.e all possible
edges between nodes in C appear in E). A maximal clique is a clique which is
not contained in any other clique of the graph.

For example, in figure 1, all the nodes are cliques of size one (but not maximal),
all the edges are cliques of size two, and the triangles CDE, EFG are cliques of
size three. The maximal cliques are AB, BC, AD, CDE, EFG.

Theorem 1 Let G be a graph and assume P can be factored in the following way

P =
∏

Cmaximal clique

φC(xC) (1)

where φC is a non-negative function depending only on the variables in C. Then,
P satisfies the Local Markov Property w.r.t. G

We will illustrate this theorem by an example shortly. The converse is a more
powerful result, and is known as the Hammersley-Clifford theorem.
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Examples: F,G ⊥ A,B,C,D | E
A ⊥ C | B,D
A ⊥ C | B,D,E, F

Figure 1: An undirected graph and some independencies encoded by it.

Theorem 2 (Hammersley-Clifford) If P > 0 and P satisfies the Local Markov
Property w.r.t G, then P can be written as a product of functions defined over the
cliques of G as in (1)1.

Exercise The theorem doesn’t always hold if P (x) = 0 for some x. Can you
construct such a counterexample? (Hint: give P lots of zeros.)

If a distribution P can be written in the form (1) for some graph G we say that
P factors according to graph G.

Example Factorization for the undirected G in figure 1

PABCDEFG = φAB(a, b)φAD(a, d)φBC (b, c)φCDE(c, d, e)φEFG(e, f, g)

The functions φ are called clique potentials. They are required to be non-
negative (positive if P > 0). Clique potentials are not uniquely defined. One can
obtain equivalent factorizations by dividing/multiplying with functions of variables
that are common between cliques. For instance, we can rewrite the above joint
distribution as

PABCDEFG =

= (2φAB(a, b))(φAD(a, d)/2)φBC (b, c)φCDE(c, d, e)φEFG(e, f, g)

= (h(a)φAB(a, b))(φAD(a, d)/h(a))φBC (b, c)φCDE(c, d, e)φEFG(e, f, g) for any h(a) > 0

= ΦAB(a, b)φAD(a, d)φBC (b, c)(φ
′
CDE(c, d, e)h(c, d))φEFG(e, f, g)

The last example shows why we only need to consider maximal cliques in the
factorization of P . Because of the non-unicity of the φ’s, the parameters of the
clique potentials are hard to interpret. The potentials do not, in general, represent
probability tables. However, there are some important special cases when the φ’s

1The original Hammersley-Clifford theorem is stronger; it only assumes that P obeys the local

Markov property according to G
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have probabilistic interpretations – these will be the decomposable models we will
study later. The Hidden Markov model you have already encountered is one of
them.

1.1 The clique potentials are not marginals in Markov Random
Fields - an example

The following simple example shows that potential 6= marginal even if the
potential is normalized.

Let V = {A,B,C}, E = {AB,BC,CA} and

φAB = φBC = φAC =

[
1
3

1
6

1
6

1
3

]

Note that this is not exactly a Markov field, as the potentials are given on the
edges, not on the maximal clique ABC. However, we shall use this example for
simplicity (otherwise we’d need 4 or more nodes to prove our point). Namely, we
will show that PAB 6∝ φAB .

PAB(0, 0) ∝ φAB(0, 0)
∑

C

φAC(0, c)φBC (0, c) =
1

3

1

3

1

3
+

1

3

1

6

1

6
=

5

33 · 4

PAB(0, 1) ∝ φAB(0, 1)
∑

C

φAC(0, c)φBC (1, c) =
1

6

1

6

1

3
+

1

6

1

3

1

6
=

2

33 · 4

By symmetry, PAB(1, 1) = PAB(0, 0) and PAB(0, 1) = PAB(1, 0). Hence

Z = 2(PAB(0, 0) + PAB(0, 1)) =
7

54

and
PAB(0, 0)

PAB(0, 1)
=

5

2
6=

φAB(0, 0)

φAB(0, 1)
=

2

1

2 Parameter estimation. The (log)-likelihood

The estimation will be considered only in the ML framework. Let

PV =
1

Z

∏

C

φC(xC) (2)
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be a joint distribution represented as a Markov Random Field (MRF), with {C}
the set of cliques and Z the normalization constant.

The parameter estimation problem calls for the estimation of the entries in all
the potential tables φC . We assume that each entry is a different parameter, and
denote it (abusively, perhaps) by φC(xC).

Denote by D a data set of complete observations of the variables in V , sampled
i.i.d. from an unknown distributions. We denote by NC(xC) the number of times
configuration xC over the variables in C appears in the data. We shall see that,
just as in the case of the BN, the set of NC counts are the sufficient statistics for
the parameters.

We have that
∑

xC∈ΩC
NC(xC) = N .

Example Let V = {A,B,C,D} with all variables taking values in {0, 1} and

PV =
1

Z
φAB(a, b)φBC (b, c)φCD(c, d)φDA(d, a) (3)

with

Z =
∑

a∈ΩA

∑

b∈ΩB

∑

c∈ΩC

∑

d∈ΩD

φAB(a, b)φBC (b, c)φCD(c, d)φDA(d, a) (4)

(Thus, Z is a sum over 16 terms.) Let the data set contain N = 5 samples.

A B C D

1 1 1 0
1 0 0 1
0 1 1 0
0 0 1 0
1 0 1 1

The log-likelihood is the logarithm of the probability of the data D under the
model PV , i.e

l(parameters;D) =
∑

C

∑

xC∈ΩC

NC(xC) lnφC(xC)−N lnZ (5)

The first observation we make is that the data enter the likelihood only via the
sufficient statistics NC(xC). Then, we will find it convenient to normalize both

sides of the above equation by the smaple size N . The ratio Nc(xC)
N = P̂C(xC)

represents a probability, namely the empirical distribution of the variable(s) in
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clique C, or the sample marginal of C w.r.t. the empirical distribution represented
by the sample D. After the normalization we obtain

1

N
l =

∑

C

∑

xC∈ΩC

P̂C(xC) lnφC(xC)− lnZ (6)

The normalization constant Z is a function of all parameters.

For the example above, we have

NAB =

B : 0 1

A = 0 1 2
1 1 1

NBC =

C : 0 1

B = 0 1 2
1 0 2

. . . (7)

The log-likelihood of this data is

1

N
l =

(
1

5
lnφAB(0, 0) +

2

5
lnφAB(0, 1) +

1

5
lnφAB(1, 0) +

1

5
lnφAB(1, 1)

)

(8)

+

(
1

5
lnφBC(0, 0) +

2

5
lnφBC(0, 1) +

2

5
lnφBC(1, 1)

)

+ . . .− lnZ (9)

3 Maximizing the likelihood by gradient ascent

To find the maximum value for the parameters, we use the iterative procedure
called gradient ascent.

GradientAscent

Input sufficient statistics NC(xC) (or sample marginals P̂C(xC)) for all C and
all xC

Initialize φC with arbitrary values

Repeat

1. φC(xC) ← φC(xC) + η ∂l/N
∂φC(xC) for all xC

until “convergence”

In other words, GradientAscent iteratively corrects the current parameter es-
timates with a correction that will increase the log-likelihood l. The parameter
η > 0 is a step size that is sometimes fixed and sometimes estimated at each step
(as we shall see in STAT 538).
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GradientAscent is a generic optimization algorithm. To use it we need to
calculate the expression of the gradient ∂l/N

∂φC(xC) . We do so now.

∂l/N

∂φC0(x
∗
C0
)

=
∂

∂φC0(x
∗
C0
)

∑

C

∑

xC∈ΩC

NC(xC)

N
lnφC(xC)−

∂

∂φC0(xC∗
0
)
lnZ(10)

=
NC0(x

∗
C0
)

N
︸ ︷︷ ︸

P̂C0
(x∗

C0
)

1

φC0(x
∗
C0
)
−

∂Z
∂φC0

(x∗
C0

)

Z
(11)

∂Z

∂φC0(xC∗
0
)

=
∑

xV

∂

∂φC0(x
∗
C0
)




∏

C′ 6=C0

φC′(xC′)φC0(x
∗
C0
)



 (12)

=
∑

xV \C0

∏

C′ 6=C0

φC′(xC′\C0
, x∗C′∩C0

) (13)

=
Z

φC0(xC∗
0
)

∑

xV \C0

∏

C′ 6=C0

φC′(xC′\C0
, x∗C′∩C0

)
φC0(xC∗

0
)

Z
(14)

=
Z

φC0(xC∗
0
)

∑

xV \C0

PV (xV \C0
, x∗C0

) (15)

= Z
PC0(x

∗
C0
)

φC0(x
∗
C0
)

(16)

∂l/N

∂φC0(x
∗
C0
)

=
P̂C0(x

∗
C0
)− PC0(x

∗
C0
)

φC0(x
∗
C0
)

(17)

Thus, the gradient w.r.t a parameter φC0(x
∗
C0
) depends on: (1) the current value

of the parameter φC0(x
∗
C0
), (2) the empirical marginal probability P̂ of the con-

figuration x∗C0
, and (3) the marginal of the respective configuration as computed

by the model PV , i.e. PC0(xC∗
0
).

The first two quantities are readily available. The marginal PC0(xC∗
0
), however,

must be computed. As we know, computing marginals is inference, thus we must
be able to perform inference in the MRF in order to estimate the parameters.

For inference we use MCMC, which produces approximate marginals.
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4 Iterative Proportional Fitting (IPF)

IPF is an alternative to gradient ascent, that does not require setting the step
size.

The idea is that, at the optimum, the gradient will be zero. Hence we will have

P̂C(xC)

φC(xC)
=

PC(xC)

φC(xC)
(18)

or

φC(xC) = φC(xC)
P̂C(xC)

PC(xC)
(19)

for all cliques C and configurations xC . The IPF algorithm tries to reach this equi-
librium point by multiplicative updates to the parameter φC(xC) (while gradient
ascent performs additive updates).

IPF Algorithm

Repeat

for every clique C ∈ C

φC(xC) ← φC(xC)
P̂C(xC)

PC(xC)
(20)

until convergence

Proposition 1 The IPF algorithm preserves the value of the normalization con-
stant Z.

Proof Assume that at step t the parameters of clique C are updated while the
other cliques’ parameters stay the same.

P
(t+1)
C (xC) =

∑

xV \C

P
(t+1)
V (xV ) (21)

=
∑

xV \C

∏

C′

φ
(t+1)
C′ (xC′)/Z(t+1) (22)

=
∑

xV \C

φC(xC)
(t+1)

∏

C′ 6=C

φ
(t)
C′ (xC′)/Z(t+1) (23)

=
∑

xV \C

φ
(t)
C (xC)

P̂C(xC)

P
(t)
C (xC)

∏

C′ 6=C

φ
(t)
C′ (xC′)/Z(t+1) (24)
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=
P̂C(xC)

Z(t+1)PC(xC)

∑

xV \C

φC(xC)
(t)

∏

C′ 6=C

φ
(t)
C′ (xC′)

︸ ︷︷ ︸

P
(t)
V

(x)Z(t)

(25)

=
Z(t)P̂

(t)
C (xC)

Z(t+1)PC(xC)

∑

xV \C

P
(t)
V (x) (26)

=
Z(t)P̂C(xC)

Z(t+1)P
(t)
C (xC)

P
(t)
C (xC) (27)

=
Z(t)

Z(t+1)
P̂C(xC) (28)

Summing now both sides over xC ∈ ΩC and noting that
∑

ΩC
P̂C =

∑

ΩC
PC = 1

we obtain Z(t)

Z(t+1) = 1, which completes the proof.

From Z(t) = Z(t+1) and (30) we can immediately derive:

Proposition 2 After updating the parameters φC we have that PC = P̂C .

Hence, the IPF updates can be thought of as updating each clique iteratively in
a way that makes its marginal equal to the data marginal. Next, we will give an
interpretation for IPF as gradient ascent.

Let us consider the gradient (11) with the second term expressed by equation (15).

∂l(t)/N

∂φC0(x
∗
C0
)

=
P̂C0(x

∗
C0
)

φC0(x
∗
C0
)
−

P
(t)
C0

(x∗C0
)

φ
(t)
C0
(x∗C0

)
(29)

Note that the first occurence of φC0(x
∗
C0
) is as a function argument, while its

second occurence is as a parameter value. We evaluate this gradient now at the

next parameter value, φ
(t+1)
C0

(x∗C0
).

∂l(t)/N

∂φC0(x
∗
C0
)

∣
∣
∣
∣
∣
φ
(t+1)
C0

(x∗
C0

)

=
P̂C0(x

∗
C0
)

φ
(t+1)
C0

(x∗C0
)
−

P
(t)
C0

(x∗C0
)

φ
(t)
C0
(x∗C0

)
(30)

If we set the condition that the gradient in this point is zero, we obtain equation
(22). Setting this condition implies that we move in parameter space in the direc-
tion of the gradient until we (approximately) find a point where the gradient is
zero, i.e. the point of the maximum increase along the gradient direction.
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