(C)2004,2019 Marina Meilă mmp@stat.washington.edu

Lecture 1. Computing: What's in a name?

Marina Meilă
mmp@stat.washington.edu

Department of Statistics
University of Washington

April, 2019

Reading: CLRS Ch. 1, Ch. 3 (without the section on o, w notation)

1. Computer programming
1.1 knowing the programming language syntax
1.2 how to write good code
2. Algorithms and data structures
3. Complexity theory
4. Optimization
5. Numerical analysis
6. Systems/Computer architectures

1.2 Good code

- does what it's supposed to do
- handles errors (you know what it's doing)

Example: computing the variance

- does it efficiently (time and resources)
- easy to understand, debug, modify - reusing code

2 Algorithms and data structures

Examples of algorithms

- compute the mean of a sample
- compute the median
- shortest path in graph
- nearest neighbor, all neighbors within radius R

Data structures

a linked list
Example: list of students in class, alphabetically sorted. Operations: add, drop, check if it's present in list, total number students.

3 Complexity

If size of the input is n, how many operations/seconds/kbytes does an algorithm need to compute the output?
Real world and theoretical measures of efficiency

- number of operations (theoretic)
- memory (theoretic)
- checkpointing
- cache hits
- disk access
- real time
- easy to modify
- worst case
- average case

Examples. Asymptotic maximum times for

- sorting $n \log n$
- max n
- median and k-th order statistic n
- shortest path in graph n
- maximum clique in a graph NP-hard
- longest common subsequence of k strings of length n NP-hard (n^{k})
- minimum spanning tree n^{2}
- minimum spanning tree with degree $\leq k$ NP-hard
- finding the prime factors of an integer: assumed hard

Optimization and Numerical Analysis

4 Optimization Optima of functions (usually) over continuous domains, with constraints.
An easy optimization problem: $\min _{x} a x^{2}+b x+c$ for $x \in(-\infty,+\infty)$ or $\min _{x} x^{T} A x+b^{T} x+c$ for $x \in \mathcal{R}^{p}$.
Another easy optimization problem (logistic regression):

$$
\max _{a, b} \prod_{i=1}^{n} \frac{e^{y_{i}\left(a x_{i}+b\right)}}{1+e^{y_{i}\left(a x_{i}+b\right)}}
$$

where $x_{1}, \ldots x_{n}$ are real numbers and $y_{1}, \ldots y_{n} \in\{-1,+1\}$.
A hard optimization problem (maxima of a kernel density estimate):

$$
\max _{x} \frac{1}{n} \sum_{i=1}^{n} k\left(x_{i}, x\right)
$$

where $k\left(x^{\prime}, x\right)$ is a positive symmetric function called the kernel.
5 Numerical analysis Algorithms for matrix computation. The behaviour of algorithms in the presence of rounding errors and how to make them stable.
Example: computing A^{-1} for a square matrix A. What happens when $\operatorname{det} A \rightarrow 0$?

This course:

- python programming
- algorithms and data structures
- applications in statistics (some possibilities)
- simple: mean, median, covariance matrix, contingency tables
- kernel density estimation
- EM for mixtures
- nearest neighbor and K-D trees
- Hidden Markov Models
- MCMC
- ...

