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1 Shortest path algorithm

Shortest-Path(A)

Input graph G = (V, E), node A ∈ V .

Data structures Each node U ∈ V has a label l which will store the length
of the shortest path between A and U .
The algorithm also uses the first in/first out priority queue Q

Initialize Q = {A}, l(A) = 0, l(U) =∞ for U 6= A

While Q not empty

1. dequeue U from Q

2. for W ∈ n(U) // explore neighbors of U

if l(W ) ==∞ // found unvisited node

(a) l(W ) = l(U) + 1
(b) enqueue W

Output l(U) for all U ∈ V

2 Set separation algorithm

A small modification of the above algorithm can verify that two sets are discon-
nected.

It is assumed that G below is obtained from the moralized ancestral graph for
some independence relationshipX ⊥ Y |Z in an original graph Gorig by removing
the nodes in Z.

If in this graph there is no connected component that contains nodes from both
X and Y , then X ⊥ Y |Z holds in the original graph. This is what the next
algorithm will check.

SetSeparation(X,Y )

Input graph G = (V, E), disjoint sets X,Y ⊆ V .
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Data structures Each node U ∈ V has a label l which will store some aux-
iliary data. The algorithm also uses the first in/first out priority queue
Q

Initialize l(U) =∞ for all U , Q = ∅

While there is a node A ∈ X with l(A) =∞

// find all nodes reachable from A

1. Q = {A}, l(A) = 0

While Q not empty

(a) dequeue U from Q
(b) for W ∈ n(U) // explore neighbors of U

if l(W ) ==∞ // found unvisited node

i. if W ∈ Y Output 6⊥ and Stop
// else
ii. l(W ) = l(U) + 1
iii. enqueue W

Output ⊥ and Stop

Example Continuation of the chest clinic example. We will test that S not
separated from B in the graph

L

A

T B

S

X = {S}, Y = {B}, l =∞ for all U ∈ V

1. l(S) = 0, enqueue S, Q = (S)

2. dequeue S; n(S) = {L} l(L)← 1, enqueue L, Q = (L)

3. dequeue L; n(L) = {B, T }

(a) B : B ∈ Y , Stop: Original independence invalid

Example Show D-separation AS ⊥ B |X in the Chest clinic example

1. Ancestral set A, T, L, S,X,B, ancestral graph
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X

T L B

A S

2. V-structures in ancestral graph X ; moral graph

X

T L B

A S

3. Delete conditioning node X

T L B

A S

4. SetSeparation(AS,B)

(a) l(A)← 0, enqueue A, Q = (A)

(b) dequeue A, n(A) = {T }, l(T )← 1, enqueue T , Q = (T )

(c) dequeue T , n(T ) = {A,L},A already visited, l(L) ← 2, enqueue L,
Q = (L)

(d) dequeue L, n(L) = {T, S}, T already visited, l(S) ← 3, enqueue S,
Q = (S)

(e) dequeue S, n(S) = {L}, L already visited, Q = ()

(f) no more unvisited nodes in X , Stop Original independence valid
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3 Reading

Shortest Path Algorithms

Lecture 4.1. Additionally, “Single source shortest path” in CRLS and West
chapters 2.1 and 2.3.

Further reading: “All shortest paths algorithms”, “Dynamic programming”
from CRLS, and the highly popular Contraction hierarchies shortest path rout-
ing algorithm (posted)

Minimum Spanning Tree Algorithms

CRLS “Minimum Spanning Tree Algorithms” chapter (handed out in class),
KF Appendix, CRLS “Data structures for disjoint sets” chapter (handed out in
class), West chapters 2.1 and 2.3.

Further reading: Randomized exact MST (e.g. Karger, Klein & Tarjan), Ran-
domized Approximate MST, Distributed MST (e.g. GHS algorithm) (references
to be added)

Spanning Trees – other topics

The most interesting source for this is West - Chapter 2: 2.2 contains the Matrix
Tree Theorem and other topics related to enumeration on trees.

Further reading from West: Chordal graphs and perfect graphs 8.1, Matroids
8.2, Random graphs 8.5 (the “uniform sampling over edges” Erdos-Renyi model),
Eigenvalues of graphs (you will encounter the Laplacian again) 8.6

Matrix tree theorem next section in these notes and “Tractable Bayesian learn-
ing of tree distributions” (posted)

Chordal graphs

Lecture 6, KF chapter 10 (and 4.5)

Further reading: “How chordal graphs work” by Terry McKee, handed out in
class

4 The Matrix Tree Theorem

Theorem 1 (Matrix Tree Theorem) Let G = (V, E) be a loopless (multi)graph,
and denote by auv ∈ {1, 2, . . .} the number of edges between nodes u and v in V .
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Let A = [auv]u,v∈V , dv =
∑

u∈V auv, L = diag{d} − A (these are called respec-
tively the adjacency matrix, vector of degrees and Laplacian of graph G).

Then, the number of distinct spanning trees of G is given by τG = (−1)i+j detL−i,−j,
where L−i,−j denotes the matrix L above with row i and column j deleted.

Remarks 1. The determinant of L itself is 0. The theorem implies that all
minors of detL, e.g. all detL−i,−j have the same value, up to a ±1 factor.

2. About the number of trees in a multigraph.
Take for example the graph

A

B

D

C

A E

2

3

2

where some edges have been labeled. The label on the edges represents (here)
the number of edges between the two nodes, if it’s larger than 1 (for instance,
there are 2 edges between A and B).

Now consider the spanning tree given by ET = {AB,BC,CD,DE}. Since the
edge AB has multiplicity 2, and BC has multiplicity 3, it means that there are
2 × 3 = 6 distinct spanning trees over the set ET , and we can think of this as
the multiplicity of ET , or simply the multiplicity of tree T .

Hence the number of distinct spanning trees in a multigraph, is the of multi-
plicities of all the spanning trees T of the corresponding simple graph.

τ(G)
def
≡

∑

T sp.tree

∏

uv∈ET

auv

3. For a disconnected graph, the number of spanning trees is 0 and this is what
the MTT will count. [Exercise] Generalize the MTT to disconnected graphs to
count the spanning forests.
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4.1 Distribution over trees

[This is covered in detail in [Meila&Jaakkola]
The MTT does not depend on the fact that the edge multiplicities are integer,
and can immediately be generalized to weighted graphs.

τ(W ) =
∑

T sp.tree

∏

uv∈ET

wuw = (−1)i+j detL−i,−j(W ) (1)

where W = [wuv], wuw ≥ 0 and L(W ) is defined as above, with W instead of
A.

What does τ(W ) represent now?

One interpretation is probabilistic. We can define a factored distribution P over
the trees of G by

P (T ) =

{ 1
τ(W )

∏

uv∈ET
wuw ifT spanning tree

0 otherwise
(2)

This distribution is reminiscent of a MRF, but has the remarkable property
that the normalization constant is τ(W ), always tractable, no matter what the
structure of the underying G. Just like in a MRF, the “potential” wuv does not
represent the marginal probabiliity of the respective edge uv of belonging to the
tree.

Re-weighting edges Let now F = [fuv] be a non-negative function over the
edges, different from W . Define

F (T ) =
∏

uv∈ET

fuv (3)

For example, F (T ) = e−energy(T ) where the energy comes from another process
than the weights. Or, F represents the likelihood of the edges/trees, while W
represents their prior.

In any case, it is straightforward (EXERCISE) to compute the expectation:

EP [F (T )] =
∑

T

P (T )F (T ) =
τ([wuvfuv]uv)

τ(W )
(4)

Expectation over additive weights Let again F = [fuv] be a non-negative
function over the edges, different from W , but define

F (T ) =
∑

uv∈ET

fuv (5)
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This is the case where F represents the cost of edges/trees, while W represents
their probability.

Surprisingly, this expectation can also be computed easily

EP [F (T )] =
∑

T

P (T )F (T ) =
∑

T

(

∑

uv∈ET

fuw

)

∏

uv∈ET

wuw. (6)

To see that, define new weights w̃uv = wuve
tfuv , with t ≥ 0. Then, it is easy to

check that
1

τ(W )

dτ(W̃ )

dt

∣

∣

∣

∣

∣

t=0

= EP [F (T )] (7)

using the fact that dw̃uv/dt = fuvw̃uv. It remains to compute the derivative of
τ(W̃ ) w.r.t. t. This can be done by taking into account that, for any square
matrix A = [aij ],

∂ detA

∂aij
= A∗

ij (8)

where A∗
ij represents the i, j-minor of A.

Assuming that τ is computed by removing the last row and column of L we
have (details skipped), and defining Q = L−n,−n and M as

Muv = (Q−1)uu + (Q−1)vv − 2(Q−1)uv, u, v < n

Mnv = Mvn = (Q−1)vv, v < n (9)

Mvv = 0

we obtain the expectation as

EP [F (T )] =
∑

u<v

fuvwuvMuv = trace[L−n,−n([fuvwuv])L
−1
−n,−n(W )] (10)
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