
STAT 534 Lecture 4

April, 2019

Radix trees

c©2002 Marina Meilă

mmp@stat.washington.edu

Reading CLRS Exercise 12–2 page 269.

1 Representing sets of strings with radix trees

Radix trees are used to store sets of strings. Here we will discuss mostly
binary strings, but they can be extended easily to store sets of strings over
any alphabet.

Below is an example of a radix tree that stores strings over the alphabet
{0, 1} (binary strings). Each left-going edge is labeled with a 0 and each
right-going edge with a 1. Thus, the path to any node in the tree is uniquely
described as a string of 0’s and 1’s. The path to the root is the empty string
“–”. For example, the path to the leftmost node in the tree is the string “0”;
the path to the lowest node in the tree is the string “1011”.

Note that there can be at most 2 strings of length 1, at most 4 strings of
length 2, and at most 2h strings of length h. All the strings of a given length
are at the same depth in the tree.

A prefix of the string a = (a1a2 . . . an) is any “beginning part” of a, i.e any
string a′ = (a′1a

′

2 . . . a
′

k
) with k < n such that ai = a′

i
for i = 1, . . . k. In a

radix tree, if node b is an ancestor of node a, then the string represented by
b is a prefix of the string (represented by) a. For example, “10” is a prefix
and an ancestor of “100”.

In order to be able to store an arbitrary set of strings in a radix tree, we adopt
the following convention: nodes that correspond to a stored string are shown
in white; nodes that do not correspond to a stored string, but are merely on

1



0

1

1

1

0

0 1

1

Figure 1: A radix tree storing the numbers 0, 011, 10, 100, 1011.

the path to one, are shown in grey. For example, the tree in figure 1 stores the
set {0, 011, 10, 100, 1011}. The grey node representing 101 does not store a
string: it is present merely to make the path to the white node 1011 possible.
Note that all the leaves of a radix tree are white nodes; there is no reason
to have grey nodes that are not interior nodes. In an implementation, the
“white” and “grey” colors are replaced by a local variable attached to each
node, indicating whether the node is “occupied” or not.

For every set of strings, there is a unique radix tree structure that represents
it. This is different from binary search trees, where every set of keys can be
stored in many equivalent structures.

Radix trees are efficient representations for “dictionaries”. They can save
significant space. For exmple, the tree in figure 1 stores 13 symbols with
only 9 nodes. There is an overhead for having a node, represented by the
additional space needed for 3 pointers and the “occupied” variable. But even
so there can be considerable space savings for large sets of strings. Figure
2 shows a small dictionary over english words storing 19 symbols with 13
nodes.

The worst case for a radix tree representation is the case when no two strings
share any suffix. Then each string is a leaf. The total storage in this case is
O( the total number of symbols in the strings ).

In addition to being memory efficient, as we shall see in the next section,
radix tree are as efficient as binary search trees for the operations of insertion,
deletion and search.

2



a

a

c

act

t

o

actor

r

an

n

b

be

e

bet

t

z

i

zip

p

Figure 2: A radix tree storing the set of strings { a, act, actor, an, be,

bell, bet, zip}. Note that the branching factor of the tree, i.e the max
number of children of a node is equal to the size of the alphabet. In the
figure, the null pointers are not shown.

1.1 Search, insertion and deletion in a radix tree

To search for a string a = (a1a2 . . . an) in a radix tree, we start from the root
and follow the path described by a1a2 . . . down the tree. The search ends
either when we find the node corresponding to the string of if we traverse
a prefix of the string and then encounter a null pointer. In the latter case,
the string cannot be in the tree. If the node corresponding to a exists and is
white, then the string is found; otherwise, the string is not in the set. Figure
3 depicts some examples. Search cannot take longer than the shortest of the
length of the string and the depth of the tree. Unlike many other search
scenarios, we are often able to say that a string is not in the tree after having
examined only part of the string.

Insertion in a radix tree is illustrated in figure 4. Given a string a =
(a1a2 . . . an) not in a radix tree, we start from the root and follow the path
described by a1a2 . . . down the tree as in the search procedure. The search
ends either when we find the node corresponding to the string or when we
encounter a null pointer. In the former case, the found node is colored white,

3



0

1

1

1

0

0 1

1

0

1

1

1

0

0 1

1

0

1

1

1

0

0 1

1

b

a. 011 found b. 01 not found c. 111 not found

Figure 3: Searching in a radix tree.

0

1

1

1

0

0 1

1

0

1

1

1

0

0 1

1

1

a b

Figure 4: Inserting 101 (a), then 11 (b) in the radix tree from figure 1. In
(a), the node already exists and it is colored in white; in (b), a new leaf has
to be created.

4



0

1

1

1

0

0 1

1

0

1

1

1

0

0 1

1

a b

Figure 5: Deleting 0 (a) and 1011 (b) from the radix tree in figure 1. In (a),
the deleted string is at an interior node; the node is colored gray. In (b) the
deleted string is at a leaf; the leaf is deleted, then recursively all the other
resulting gray leaves.

indicating that the string a is now in the set. This situation occurs when a

is a prefix for another string already in the tree. In the latter case, assume
that the last node encountered is the prefix (a1a2 . . . ak). We continue from
this node by inserting the nodes corresponding to ak+1, ak+2 . . . an and col-
oring them grey, with the exception of the last one, which is colored white.
Insertion thus takes time proportional to the length of the string.

For deletion there are two cases: (1) The deleted string is an internal node.
In this case all we need to do is to color the node grey. (2) The deleted string
is a leaf. If a leaf is deleted there is no reason to keep the corresponding tree
node in existence, so it can be pruned from the tree. Then we can continue
pruning the tree upward from the deleted leaf, removing all grey leves that
appear. Pruning continues until we encounter either a white node or a grey
node that has a white descendant. Figure 5,b shows an example.

5



2 Lexicographic sorting and preorder traver-

sal of radix trees

The lexicographic order is a usual way of ordering strings of different
lengths. It is the ordering used in dictionaries, hence the term “lexico-
graphic”. Any two strings a = (a1 . . . an), 6= b = (b1 . . . bm) can be com-
pared. We have a < b iff ai = bi for i = 1, . . . k − 1, with k ≥ 1, and ak < bk
or n = k − 1, m > k − 1. Otherwise, a > b. A consequence of this rule is
that the empty string is smaller than any other string.

In words, to compare strings a, b, we eliminate their longest common prefix,
then compare the first characters of the remaining suffixes. For example, the
following is a lexicographic ordering of the strings stored in the tree shown
in figure 1.
0

011

10

100

1011

The lexicographic ordering of the strings stored in the tree shown in figure 2
is
a

act

actor

an

be

bet

zip

Now we show how to obtain the lexicographic ordering of the strings stored
in a radix tree. First, we need to notice that radix trees have a property (or
an invariant) similar to the binary search tree property.

Let x be any node in a radix tree. Then,

x < yL < zR for all yL ∈ leftsubtree[x], zR ∈ rightsubtree[x]

where the “<” sign represent the lexicographic ordering.

6



It follows now that outputting all the strings in a radix tree in sorted order
can be done by first outputting the root, then the left subtree (in sorted
order), then the right subtree. This traversal of a tree is called preorder

traversal.

PreorderPrint(x)

if x 6= Null

print x
PreorderPrint(left[x])
PreorderPrint(right[x])

To print the nodes of a radix tree T in lexicographic order, one needs to call
PreorderPrint(root[T ]).

3 Extensions

Radix trees and their operations can be extended in many ways. Here are a
few possibilities (the details of these are left as an exercise).

• Radix trees with counts, or storing multiple identical strings.

In each node of a radix tree, a binary variable v=grey/white indicates
whether the node is occupied by a string or not. By making v an
integer variable, one can store a count (0 or larger) for each string in
the tree. Such a data structure can be used, for example, to count the
number of times each word appears in a text. Constructing the radix
tree structure is linear in the number of characters in the text.

• Radix trees with satellite data. The strings in a radix tree can
be used as keys and additional data can be stored at each white node,
just like in a binary search tree. In this case, however, there can be
no duplicate keys, because all records with equal keys will be stored at
the same node.

7



• Union and intersection of radix trees. Denote by T1 and T2 two
sets of strings represented as radix trees. Let T∪ and T∩ denote the
set union and set intersection of T1, T2 represented as radix trees. It
turns out that T∪, T∩ can be computed efficiently by exploiting the tree
structure. The complexity of the algorithms is proportional to the size
of the intersection T∩. Similar algorithms exist for computing the set
differences T1 \ T2, T2 \ T1.

• Exploiting common suffixes. Radix trees save space by exploiting
the fact that several strings may share the same prefix. For sets of
words in the English words it is also the case that many words share
the same suffix. For example, the final -s for noun plurals, suffixes
like -ment, -ing, -ion, -ed are very common in English. One can
construct structures where tree “branches” that share a suffix “meet”,
thus avoiding to represent the common suffix more than once. Such
structures can also bring huge savings in practice. Note that the rep-
resentation of a dictionary with such a structure is not unique.

8


