
Lecture 5: Kernel density estimation, regression and
classification. Indexing large data sets

Marina Meilă
mmp@stat.washington.edu

Department of Statistics
University of Washington

October, 2018, April 2019

The Nearest-Neighbor predictor

I Main Idea The label of a point x is assigned as follows:
1. find the example x i that is nearest to x (in Euclidean distance)

2. assign x the label y i

I Practically, one uses the K nearest neighbors of x (with K = 3, 5 or larger), then
I for classification f (x) = the most frequent label among the K neighbors

(well suited for multiclass)
I for regression f (x) = 1

K

∑
i neighbor of x y

i = mean of neighbors’ labels

I No parameters to estimate! (But all data must be stored)

Kernel regression and classification

I Like the K -nearest neighbor but with “smoothed” neighborhoods

f (x) =
N∑
i=1

βib(x , x i)y i (1)

where βi are coefficients

I Intuition: center a “bell-shaped” kernel function b on each data point, and obtain
the prediction f (x) as a weighted sum of the values y i , where the weights are
βib(x , x i)

I Requirements for a kernel function b(x , x ′)
1. non-negativity
2. symmetry in the arguments x, x′

3. optional: radial symmetry, bounded support, smoothness

I A typical kernel function is the Gaussian kernel (or Radial Basis Function (RBF))

bh(x , x ′) = e
− ||x−x′||2

2h2 with h = the kernel width (2)

Regression example

A special case in wide use is the Nataraya-Watson regressor

f (x) =

∑N
i=1 b

(
||x−x i ||

h

)
y i∑N

i=1 b
(
||x−x i ||

h

) . (3)

In this regressor, f (x) is always a convex combination of the y i ’s, and the weigths are
proportional to bh(x , x i).
The Nataraya-Watson regressor is biased if the density of PX varies around x .

Local Linear Regression

To correct for the bias (to first order) one can estimate a regression line around x .

1. Given query point x
2. Compute kernel bh(x , x i) = wi for all i = 1, . . .N

3. Solve weighted regression minβ,β0

∑N
i=1 wi

(
y i − βT x i − β0

)2
to obtain β, β0

(β, β0 depend on x through wi)
4. Calculate f (x) = βT x + β0

Exercise Show that Nataraya-Watson solves a local linear regression with fixed β = 0

Kernel binary classifiers

I obtained by setting y i to ±1.

I Note that the classifier can be written as the difference of two non-negative
functions

f (x) ∝
∑
i :y i=1

b

(
||x − x i ||

h

)
−

∑
i :y i=−1

b

(
||x − x i ||

h

)
. (4)

Kernel density estimation

f (x) =
1

Nhd

N∑
i=1

b

(
||x − x i ||

h

)
(5)

I f (x) is the average of kernels placed at data points

I In all cases, h is a smoothing parameter

Neighbor search for large N

I Both K-nearest neighbor and kernel prediction involve scanning the whole data
set for every single prediction

I For K-nearest neighbor, predicting f (x) for a single x involves computing N distances in
n dimensions, a task that is ∼ Nn.

I For kernel methods, finding the data points in the support of the kernel, a ball of radius
r , also involves computing the distances to all points.

I Neighbor search is (polynomial but) computationally expensive

I Can we be more efficient?
I Yes, if we index (i.e. preprocess) the data

I indexing means organizing the data in a way that makes finding the neighbors of any
point fast

I in particular, with an index, finding neighbors does not require comparing with all N
data points

I Indexing methods
I K-D trees
I Ball trees
I A-D trees (for discrete data)
I Locality Sensitive Hashing
I . . . (many other methods with guarantees)

K-D Trees

A K-D tree is a “K-dimensional tree”, whose nodes correspond to
hyper-rectangular regions of the data space.

I Each node j stores:
I a subset Dj of the data D
I an n-dimensional rectangle with Rj = (rj,min, rj,max , j = 1 : n), where rj,min = minDj

x i
j ,

rj,max = maxDj
x i
j .

I other statistics of Dj , such as number of nodes, mean, variance

K-DTreeConstruction Algorithm

Input (labeled) training set D (labels are not used in the tree construction)

Initialize tree root R0 with D0 = D.

Repeat recursively until no leaf can be split

choose a leaf node j with |Dj | > N0 points
1. find the longest dimension of Rj , i.e k = argmax

l=1:n
(rj,max − rj,min) and set

r = (rk,max − rk,min)/2

2. split Dj into Dj,left ,Dj,right with x i ∈ Dj,left iff x i
k ≤ r

3. create new leaves Rj,left ,Rj,right storing Dj,left ,Dj,right and their respective bounding
boxes and other statistics.

Using a K-D tree to find the neighbors
Given a query point x , a search radius r , and a dataset D indexed by a K-D tree T
Wanted find all the points in D that are in the ball Bx (r) (i.e. the r -neighbors of x)

Basic remarks
I checking if Bx (r) intersects with a hyper-rectangle R is fast

I if Bx (r) ∩ R = ∅, then no data point in R can be a neighbor

I checking if Bx (r) contains a hyper-rectangle R is fast Exercise Think of an algorithm
to do it!

I if Bx (r) ⊃ R, then all data points in R are neighbors

K-D TreeNeighborRetrieval Algorithm (x , r , T)

Initialize Nr = ∅ set of neighbors, R = root(T)

call recursive function ProcessNode(x , r ,R,Nr)

ProcessNode (x , r ,Rj ,Nr)

if Bx (r) ∩ Rj = ∅ return no neighbors in this box

else if Bx (r) ⊃ Rj all points in Rj are neighbors
1. Nr ← Nr ∪ Rj

2. return

else if Rj is a leaf make explicit comparisons

1. for x i ∈ Dj , if ||x i − x|| < r , Nr ← Nr ∪ {x i}
2. return

else go to the next level
1. call ProcessNode (x, r ,Rj,left ,Nr)
2. call ProcessNode (x, r ,Rj,right ,Nr)
3. return

Ball Tree and K-D Tree

I K-D trees may become inefficient when data dimension n is large.

I In that case, we construct Ball Trees

Hash functions and hash codes

Let the data space be Rn, and assume some fixed probability measure on this space.
I A family of hash functions is a set H = {h : Rn → {0, 1} } with the following

properties
1. For each h, Pr [h(x) = 1] ≈ 1

2
2. The binary random variables defined by the functions in H are mutually independent.

(Or, if H is not finite, a “not too large” random sample of such random variables is
mutually independent.)

I Let h1:k be a mutually independent subset of H. We call

g(x) = [h1(x) h2(x) . . . hk (x)] ∈ {0, 1}k (6)

the hash code of x .

I Note that the codes g(x) are (approximately) uniformly distributed; the
probability of any g ∈ {0, 1}k is about 1

2k
.

I Useful hash functions must be fast to compute.

Hash tables

I A hash table T is a data structure in which points in Rn can be stored in such a
way that

1. All points with the same code g are in the same bin denoted by Tg . The table need not
use space for empty bins.

2. Given any value g ∈ {0, 1}k , we can obtain a point in Tg or find if Tg = ∅ in constant
time (independent of the number of points N stored in T).
Some versions of hash tables return all points in Tg , e.g., as a list, in constant time.

3. It is usually assumed that storing a point x with given code g(x) in a hash table is also
constant time.

I Hence, using a hash table to store an x or to retrieve something, involves
computing k hash functions, then a constant-time access to T .

I When x ′ 6= x and g(x ′) = g(x) we call this a collision. In some applications (not
of interest to us), collisions are to be avoided.

Locality Sensitive Hash Functions and Codes
I A hash function h is locality sensitive iff for any x , x ′ ∈ Rn

Pr [h(x) = h(x ′)] ≥ p1 when ||x − x ′|| ≤ r (7)

Pr [h(x) = h(x ′)] ≤ p2 when ||x − x ′|| ≥ cr (8)

with p1, p2, r and c > 1 fixed parameters (of the family H) and p1 > p2.
I W.l.o.g., we set p1 = pρ2 for some ρ < 1.

I A locality sensitive h makes a weak distinction between points that are close in
space vs. points that are far away. A hash code g from locality sensitive hash
functions sharpens this distinction, in the sense that the probability of far away
points colliding can be made arbitrarily small.

pbad = Pr [g(x) = g(x ′) | ||x − x ′|| > cr] ≤ pk2 (9)

I Assume x is not in T ; for any x ′ ∈ D which is far from x ,the probability that x ′

collides with x is ≤ pbad .
I We construct T so that pbad ≤ 1

N
for N the sample size. For this we need Exercise

(in Homework 1)

k =
lnN

− ln p2
⇒ pbad ≤

1

N
(10)

I Suppose x ′ ∈ T is “close” to x . What is the probability that g(x ′) = g(x)?

pgood = pk1 = pρk2 =
1

Nρ
(11)

This is the probability that the bin Tg(x) contains x ′.

Approximate r -neighbor retrival by LSH
Input D set of N points, L mutually independent hash codes g1:L of dimension k.

Indexing Construct L hash tables T 1:L, each storing D.
Retrieval Given x

1. compute g(x)
2. for j = 1, 2, . . . L

if the bin T j
g(x)
6= ∅

2.1 return some (all) x′ from it.
2.2 stop if a single neighbor is wanted.

Some analysis. We set L = Nρ

I Indexing time ∝ kNρ+1

I Retrieval time ∝ kNρ

I Space used ∝ kNρ+1

I For each x ′ ∈ D close to x , the probability that x ′ is NOT returned for any
j ∈ 1 : L is

(1−
1

Nρ
)N
ρ
≈

1

e
(12)

This can be made arbitrarily small by multiplying L with a constant.
I For each x ′ ∈ D far from x , the probability that x ′ is NOT returned for any

j ∈ 1 : L is

(1−
1

N
)N
ρ
≈
(

1

e

)1/N1−ρ

≈
1

e0
= 1 (13)

I Hence, we are almost sure not to return a far point, and have a significant
probability to return a close point when one exists, if no points neither far nor
close are in the data. This is why this algorithm is approximate: it may also
return points with r < ||x ′ − x || ≤ cr .

How to find good hash functions?

I We need large families of h functions

I that are easy to generate randomly

I and fast to compute for a given x

I Generic method to obtain them: random projections

Projecting on a random vector

I Data are x ∈ Rn as usual.

I Define ha,b : Rn → Z by

ha,b(x) = b
aT x + b

w
c (14)

with w > 0 a width parameter, a ∈ Rn, b ∈ [0,w).

I Intuitively, x is ”projected” on a1, then the result is quantized into bins of width
w , with a grid origin given by b.

I The family of hash functions is Hw = {ha,b, a ∈ Rn, b ∈ [0,w)}.
I Sampling Hw : a ∼ Normal(0, In), b ∼ uniform[0,w).

I Because the Normal distribution is a stable distribution, this ensures that aT x is
distributed as Normal(0, ||x||2). Exercise Verify this

I Hence aT x − aT x′ is distributed as Normal(0, ||x − x′||2). Exercise Verify this
I Moreover, if hash functions are sampled independently from Hw ,(and nothing is known

about x) then ha,b(x), ha′,b′ (x) are independent random variables. Exercise Prove this

I This type of hash functions are being widely used by approximate neighbor search
algorithms.

1a is not necessarily unit length

	The Nearest-Neigbor and kernel predictors
	Neighbor search for large N: K-D trees and ball-trees
	Neighbor search by Locality Sensitive Hashing
	Hash functions and hash tables
	Locality Sensitive Hashing
	Approximate r-neighbor retrival by LSH
	LSH by random projections

