Lecture 5: Kernel density estimation, regression and classification. Indexing large data sets

Marina Meilă
mmp@stat. washington.edu

Department of Statistics
University of Washington

October, 2018, April 2019

The Nearest-Neighbor predictor

- Main Idea The label of a point x is assigned as follows:

1. find the example x^{i} that is nearest to x (in Euclidean distance)
2. assign x the label y^{i}

- Practically, one uses the K nearest neighbors of x (with $K=3,5$ or larger), then
- for classification $f(x)=$ the most frequent label among the K neighbors (well suited for multiclass)
- for regression $f(x)=\frac{1}{K} \sum_{i \text { neighbor of } x} y^{i}=$ mean of neighbors' labels
- No parameters to estimate! (But all data must be stored)

Kernel regression and classification

- Like the K-nearest neighbor but with "smoothed" neighborhoods

$$
\begin{equation*}
f(x)=\sum_{i=1}^{N} \beta_{i} b\left(x, x^{i}\right) y^{i} \tag{1}
\end{equation*}
$$

where β_{i} are coefficients

- Intuition: center a "bell-shaped" kernel function b on each data point, and obtain the prediction $f(x)$ as a weighted sum of the values y^{i}, where the weights are $\beta_{i} b\left(x, x^{i}\right)$
- Requirements for a kernel function $b\left(x, x^{\prime}\right)$

1. non-negativity
2. symmetry in the arguments x, x^{\prime}
3. optional: radial symmetry, bounded support, smoothness

- A typical kernel function is the Gaussian kernel (or Radial Basis Function (RBF))

$$
\begin{equation*}
b_{h}\left(x, x^{\prime}\right)=e^{-\frac{\left\|x-x^{\prime}\right\|^{2}}{2 h^{2}}} \text { with } \quad h=\text { the kernel width } \tag{2}
\end{equation*}
$$

Regression example

A special case in wide use is the Nataraya-Watson regressor

$$
\begin{equation*}
f(x)=\frac{\sum_{i=1}^{N} b\left(\frac{\left\|x-x^{i}\right\|}{h}\right) y^{i}}{\sum_{i=1}^{N} b\left(\frac{\left\|x-x^{i}\right\|}{h}\right)} . \tag{3}
\end{equation*}
$$

In this regressor, $f(x)$ is always a convex combination of the y^{i} 's, and the weigths are proportional to $b_{h}\left(x, x^{i}\right)$.
The Nataraya-Watson regressor is biased if the density of P_{X} varies around x.

Local Linear Regression

To correct for the bias (to first order) one can estimate a regression line around x.

1. Given query point x
2. Compute kernel $b_{h}\left(x, x^{i}\right)=w_{i}$ for all $i=1, \ldots N$
3. Solve weighted regression $\min _{\beta, \beta_{0}} \sum_{i=1}^{N} w_{i}\left(y^{i}-\beta^{T} x^{i}-\beta_{0}\right)^{2}$ to obtain β, β_{0} (β, β_{0} depend on x through w_{i})
4. Calculate $f(x)=\beta^{T} x+\beta_{0}$

Exercise Show that Nataraya-Watson solves a local linear regression with fixed $\beta=0$

Kernel binary classifiers

- obtained by setting y^{i} to ± 1.
- Note that the classifier can be written as the difference of two non-negative functions

$$
\begin{equation*}
f(x) \propto \sum_{i: y^{i}=1} b\left(\frac{\left\|x-x^{i}\right\|}{h}\right)-\sum_{i: y^{i}=-1} b\left(\frac{\left\|x-x^{i}\right\|}{h}\right) \tag{4}
\end{equation*}
$$

Kernel density estimation

$$
\begin{equation*}
f(x)=\frac{1}{N h^{d}} \sum_{i=1}^{N} b\left(\frac{\left\|x-x^{i}\right\|}{h}\right) \tag{5}
\end{equation*}
$$

- $f(x)$ is the average of kernels placed at data points
- In all cases, h is a smoothing parameter

Neighbor search for large N

- Both K-nearest neighbor and kernel prediction involve scanning the whole data set for every single prediction
- For K-nearest neighbor, predicting $f(x)$ for a single x involves computing N distances in n dimensions, a task that is $\sim N n$.
- For kernel methods, finding the data points in the support of the kernel, a ball of radius r, also involves computing the distances to all points.
- Neighbor search is (polynomial but) computationally expensive
- Can we be more efficient?
- Yes, if we index (i.e. preprocess) the data
- indexing means organizing the data in a way that makes finding the neighbors of any point fast
- in particular, with an index, finding neighbors does not require comparing with all N data points
- Indexing methods
- K-D trees
- Ball trees
- A-D trees (for discrete data)
- Locality Sensitive Hashing
- ... (many other methods with guarantees)

K-D Trees

A K-D tree is a "K-dimensional tree", whose nodes correspond to hyper-rectangular regions of the data space.

- Each node j stores:
- a subset \mathcal{D}_{j} of the data \mathcal{D}
- an n-dimensional rectangle with $R_{j}=\left(r_{j, \min }, r_{j, \max }, j=1: n\right)$, where $r_{j, \min }=\min _{\mathcal{D}_{j}} x_{j}^{i}$, $r_{j, \text { max }}=\max _{\mathcal{D}_{j}} x_{j}^{i}$.
- other statistics of \mathcal{D}_{j}, such as number of nodes, mean, variance

K-DTreeConstruction Algorithm

Input (labeled) training set \mathcal{D} (labels are not used in the tree construction)
Initialize tree root R_{0} with $\mathcal{D}_{0}=\mathcal{D}$.
Repeat recursively until no leaf can be split
choose a leaf node j with $\left|\mathcal{D}_{j}\right|>N_{0}$ points

1. find the longest dimension of R_{j}, i.e $k=\underset{l=1: n}{\operatorname{argmax}}\left(r_{j, \max }-r_{j, \text { min }}\right)$ and set $r=\left(r_{k, \text { max }}-r_{k, \text { min }}\right) / 2$
2. split \mathcal{D}_{j} into $\mathcal{D}_{j, \text { left }}, \mathcal{D}_{j, \text { right }}$ with $x^{i} \in \mathcal{D}_{j, \text { left }}$ iff $x_{k}^{i} \leq r$
3. create new leaves $R_{j, \text { left }}, R_{j, \text { right }}$ storing $\mathcal{D}_{j, \text { left }}, \mathcal{D}_{j, \text { right }}$ and their respective bounding boxes and other statistics.

Using a K-D tree to find the neighbors

Given a query point x, a search radius r, and a dataset \mathcal{D} indexed by a K-D tree \mathcal{T}
Wanted find all the points in \mathcal{D} that are in the ball $B_{x}(r)$ (i.e. the r-neighbors of x)
Basic remarks

- checking if $B_{x}(r)$ intersects with a hyper-rectangle R is fast
- if $B_{x}(r) \cap R=\emptyset$, then no data point in R can be a neighbor
- checking if $B_{x}(r)$ contains a hyper-rectangle R is fast Exercise Think of an algorithm to do it!
- if $B_{x}(r) \supset R$, then all data points in R are neighbors

K-D TreeneighborRetrieval Algorithm (x, r, \mathcal{T})

Initialize $N_{r}=\emptyset$ set of neighbors, $R=\operatorname{root}(\mathcal{T})$
call recursive function $\operatorname{ProcessNode}\left(x, r, R, N_{r}\right)$

ProcessNode $\left(x, r, R_{j}, N_{r}\right)$
if $B_{x}(r) \cap R_{j}=\emptyset$ return
else if $B_{x}(r) \supset R_{j}$
no neighbors in this box
all points in R_{j} are neighbors

1. $N_{r} \leftarrow N_{r} \cup R_{j}$
2. return
else if R_{j} is a leaf
make explicit comparisons
3. for $x^{i} \in \mathcal{D}_{j}$, if $\left\|x^{i}-x\right\|<r, N_{r} \leftarrow N_{r} \cup\left\{x^{i}\right\}$
4. return
else
5. call ProcessNode $\left(x, r, R_{j, \text { left }}, N_{r}\right)$
6. call ProcessNode $\left(x, r, R_{j, r i g h t}, N_{r}\right)$
7. return

Ball Tree and K-D Tree

- K-D trees may become inefficient when data dimension n is large.
- In that case, we construct Ball Trees

"Each node of the tree stores bounding box, mean, variance of data points under it
- Hierarchically divide boxes along their longest dimension

Ball trees (M-trees)

- Like K-D trees but use balls instead of boxes
" Works in high dimensions if data non-uniform

Hash functions and hash codes

Let the data space be \mathbb{R}^{n}, and assume some fixed probability measure on this space.

- A family of hash functions is a set $\mathcal{H}=\left\{h: \mathbb{R}^{n} \rightarrow\{0,1\}\right\}$ with the following properties

1. For each $h, \operatorname{Pr}[h(x)=1] \approx \frac{1}{2}$
2. The binary random variables defined by the functions in \mathcal{H} are mutually independent. (Or, if \mathcal{H} is not finite, a "not too large" random sample of such random variables is mutually independent.)

- Let $h_{1: k}$ be a mutually independent subset of \mathcal{H}. We call

$$
\begin{equation*}
g(x)=\left[h_{1}(x) h_{2}(x) \ldots h_{k}(x)\right] \in\{0,1\}^{k} \tag{6}
\end{equation*}
$$

the hash code of x.

- Note that the codes $g(x)$ are (approximately) uniformly distributed; the probability of any $g \in\{0,1\}^{k}$ is about $\frac{1}{2^{k}}$.
- Useful hash functions must be fast to compute.

Hash tables

- A hash table \mathcal{T} is a data structure in which points in \mathbb{R}^{n} can be stored in such a way that

1. All points with the same code g are in the same bin denoted by \mathcal{T}_{g}. The table need not use space for empty bins.
2. Given any value $g \in\{0,1\}^{k}$, we can obtain a point in \mathcal{T}_{g} or find if $\mathcal{T}_{g}=\emptyset$ in constant time (independent of the number of points N stored in \mathcal{T}).
Some versions of hash tables return all points in \mathcal{T}_{g}, e.g., as a list, in constant time.
3. It is usually assumed that storing a point x with given code $g(x)$ in a hash table is also constant time.

- Hence, using a hash table to store an x or to retrieve something, involves computing k hash functions, then a constant-time access to \mathcal{T}.
- When $x^{\prime} \neq x$ and $g\left(x^{\prime}\right)=g(x)$ we call this a collision. In some applications (not of interest to us), collisions are to be avoided.

Locality Sensitive Hash Functions and Codes

- A hash function h is locality sensitive iff for any $x, x^{\prime} \in \mathbb{R}^{n}$

$$
\begin{align*}
& \operatorname{Pr}\left[h(x)=h\left(x^{\prime}\right)\right] \geq p_{1} \quad \text { when }\left\|x-x^{\prime}\right\| \leq r \tag{7}\\
& \operatorname{Pr}\left[h(x)=h\left(x^{\prime}\right)\right] \leq p_{2} \quad \text { when }\left\|x-x^{\prime}\right\| \geq c r \tag{8}
\end{align*}
$$

with p_{1}, p_{2}, r and $c>1$ fixed parameters (of the family \mathcal{H}) and $p_{1}>p_{2}$.

- W.I.o.g., we set $p_{1}=p_{2}^{\rho}$ for some $\rho<1$.
- A locality sensitive h makes a weak distinction between points that are close in space vs. points that are far away. A hash code g from locality sensitive hash functions sharpens this distinction, in the sense that the probability of far away points colliding can be made arbitrarily small.

$$
\begin{equation*}
p_{b a d}=\operatorname{Pr}\left[g(x)=g\left(x^{\prime}\right)\| \| x-x^{\prime} \|>c r\right] \leq p_{2}^{k} \tag{9}
\end{equation*}
$$

- Assume x is not in \mathcal{T}; for any $x^{\prime} \in \mathcal{D}$ which is far from x, the probability that x^{\prime} collides with x is $\leq p_{\text {bad }}$.
- We construct \mathcal{T} so that $p_{\text {bad }} \leq \frac{1}{N}$ for N the sample size. For this we need Exercise (in Homework 1)

$$
\begin{equation*}
k=\frac{\ln N}{-\ln p_{2}} \quad \Rightarrow \quad p_{\text {bad }} \leq \frac{1}{N} \tag{10}
\end{equation*}
$$

- Suppose $x^{\prime} \in \mathcal{T}$ is "close" to x. What is the probability that $g\left(x^{\prime}\right)=g(x)$?

$$
\begin{equation*}
p_{\text {good }}=p_{1}^{k}=p_{2}^{\rho k}=\frac{1}{N^{\rho}} \tag{11}
\end{equation*}
$$

This is the probability that the bin $\mathcal{T}_{g(x)}$ contains x^{\prime}.

Approximate r-neighbor retrival by LSH

Input \mathcal{D} set of N points, L mutually independent hash codes $g_{1: L}$ of dimension k. Indexing Construct L hash tables $\mathcal{T}^{1: L}$, each storing \mathcal{D}.
Retrieval Given x

1. compute $g(x)$
2. for $j=1,2, \ldots L$
if the $\operatorname{bin} \mathcal{T}_{g(x)}^{j} \neq \emptyset$
2.1 return some (all) x^{\prime} from it.
2.2 stop if a single neighbor is wanted.

Some analysis. We set $L=N^{\rho}$

- Indexing time $\propto k N^{\rho+1}$
- Retrieval time $\propto k N^{\rho}$
- Space used $\propto k N^{\rho+1}$
- For each $x^{\prime} \in \mathcal{D}$ close to x, the probability that x^{\prime} is NOT returned for any $j \in 1: L$ is

$$
\begin{equation*}
\left(1-\frac{1}{N^{\rho}}\right)^{N^{\rho}} \approx \frac{1}{e} \tag{12}
\end{equation*}
$$

This can be made arbitrarily small by multiplying L with a constant.

- For each $x^{\prime} \in \mathcal{D}$ far from x, the probability that x^{\prime} is NOT returned for any $j \in 1: L$ is

$$
\begin{equation*}
\left(1-\frac{1}{N}\right)^{N^{\rho}} \approx\left(\frac{1}{e}\right)^{1 / N^{1-\rho}} \approx \frac{1}{e^{0}}=1 \tag{13}
\end{equation*}
$$

- Hence, we are almost sure not to return a far point, and have a significant probability to return a close point when one exists, if no points neither far nor close are in the data. This is why this algorithm is approximate: it may also return points with $r<\left\|x^{\prime}-x\right\| \leq c r$.

How to find good hash functions?

- We need large families of h functions
- that are easy to generate randomly
- and fast to compute for a given x
- Generic method to obtain them: random projections

Projecting on a random vector

- Data are $x \in \mathbb{R}^{n}$ as usual.
- Define $h_{a, b}: \mathbb{R}^{n} \rightarrow \mathbb{Z}$ by

$$
\begin{equation*}
h_{a, b}(x)=\left\lfloor\frac{a^{T} x+b}{w}\right\rfloor \tag{14}
\end{equation*}
$$

with $w>0$ a width parameter, $a \in \mathbb{R}^{n}, b \in[0, w)$.

- Intuitively, x is "projected" on a^{1}, then the result is quantized into bins of width w, with a grid origin given by b.
- The family of hash functions is $\mathcal{H}_{w}=\left\{h_{a, b}, a \in \mathbb{R}^{n}, b \in[0, w)\right\}$.
- Sampling $\mathcal{H}_{w}: a \sim \operatorname{Normal}\left(0, I_{n}\right), b \sim$ uniform $[0, w)$.
- Because the Normal distribution is a stable distribution, this ensures that $a^{T} x$ is distributed as $\operatorname{Normal}\left(0,\|x\|^{2}\right)$. Exercise Verify this
- Hence $a^{T} x-a^{T} x^{\prime}$ is distributed as $\operatorname{Normal}\left(0,\left\|x-x^{\prime}\right\|^{2}\right)$. Exercise Verify this
- Moreover, if hash functions are sampled independently from \mathcal{H}_{w}, (and nothing is known about x) then $h_{a, b}(x), h_{a^{\prime}, b^{\prime}}(x)$ are independent random variables. Exercise Prove this
- This type of hash functions are being widely used by approximate neighbor search algorithms.

[^0]
[^0]: ${ }^{1} a$ is not necessarily unit length

