Lecture 5: Kernel density estimation, regression and
classification. Indexing large data sets

Marina Meila
mmp@stat.washington.edu

Department of Statistics
University of Washington

October, 2018, April 2019

The Nearest-Neighbor predictor

> Main Idea The label of a point x is assigned as follows:
1. find the example x' that is nearest to x (in Euclidean distance)
2. assign x the label y'
> Practically, one uses the K nearest neighbors of x (with K = 3,5 or larger), then

> for classification f(x) = the most frequent label among the K neighbors
(well suited for multiclass)

> for regression f(x) = & 2 neighbor ofx Y' = mean of neighbors’ labels

> No parameters to estimate! (But all data must be stored)

Kernel regression and classification

> Like the K-nearest neighbor but with “smoothed” neighborhoods

N
f(x) = > Biblx,x")y! 1)
i=1

where (3; are coefficients

> Intuition: center a “bell-shaped” kernel function b on each data point, and obtain
the prediction f(x) as a weighted sum of the values y’, where the weights are
Bib(x, x")
> Requirements for a kernel function b(x, x’)
1. non-negativity
2. symmetry in the arguments x, x’
3. optional: radial symmetry, bounded support, smoothness

v

A typical kernel function is the Gaussian kernel (or Radial Basis Function (RBF))

7112
_ x=x1]]

bp(x,x") = e 2 with h = the kernel width 2)

Regression example

A special case in wide use is the Nataraya-Watson regressor

Z;N:1 b(\lx—hx H>yi

N x=x|)
2i—1b (h)

In this regressor, f(x) is always a convex combination of the y’’s, and the weigths are

proportional to by(x, x').
The Nataraya-Watson regressor is biased if the density of Px varies around x.

f(x) =

®3)

Local Linear Regression

To correct for the bias (to first order) one can estimate a regression line around x.

1. Given query point x

2. Compute kernel by(x,x') =w; foralli=1,...N

3. Solve weighted regression ming g, Z,N:I w; (yi — BT — ,80)2 to obtain 3, 5y
(B, Bo depend on x through w;)

4. Calculate f(x) = BTx+ Bo

Exercise Show that Nataraya-Watson solves a local linear regression with fixed 8 = 0

Kernel binary classifiers

> obtained by setting y' to +1.

> Note that the classifier can be written as the difference of two non-negative

functions
fx) < > b(w) - > b(w) (4)

iyi=1 iyl=—1

Kernel density estimation

fx) = thz (lX_XIH)

> f(x) is the average of kernels placed at data points

> In all cases, h is a smoothing parameter

®)

Neighbor search for large N

> Both K-nearest neighbor and kernel prediction involve scanning the whole data
set for every single prediction
> For K-nearest neighbor, predicting f(x) for a single x involves computing N distances in
n dimensions, a task that is ~ Nn.
> For kernel methods, finding the data points in the support of the kernel, a ball of radius
r, also involves computing the distances to all points.

» Neighbor search is (polynomial but) computationally expensive

» Can we be more efficient?

> Yes, if we index (i.e. preprocess) the data
> indexing means organizing the data in a way that makes finding the neighbors of any
point fast
> in particular, with an index, finding neighbors does not require comparing with all N/
data points
> Indexing methods
> K-D trees
Ball trees
A-D trees (for discrete data)
Locality Sensitive Hashing
... (many other methods with guarantees)

vyvyyvyy

K-D Trees

A K-D tree is a “K-dimensional tree”, whose nodes correspond to
hyper-rectangular regions of the data space.
» Each node j stores:
> a subset D; of the data D
> an n-dimensional rectangle with R; = (£}, min, fj,max, j = 1 : n), where rj min = minDj xj’,
Ij,max = Maxp, xj’
> other statistics of D, such as number of nodes, mean, variance

K-DTREECONSTRUCTION Algorithm

Input (labeled) training set D (labels are not used in the tree construction)
Initialize tree root Ry with Dy = D.
Repeat recursively until no leaf can be split
choose a leaf node j with |D;| > Ny points
1. find the longest dimension of R;, i.e k = argmax (fj, max — fj,min) and set
I=1:n :
r= (rk,max - rk,mr'n)/z .)
. split Dj into Djy[eft7 Dj,right with x' € Djwleft iff XL <r
3. create new leaves R; jeft, R; right storing D; jert, Dj right and their respective bounding
boxes and other statistics.

N

Using a K-D tree to find the neighbors
Given a query point x, a search radius r, and a dataset D indexed by a K-D tree T
Wanted find all the points in D that are in the ball Bx(r) (i.e. the r-neighbors of x)

Basic remarks
> checking if Bx(r) intersects with a hyper-rectangle R is fast
> if By(r) N R = 0, then no data point in R can be a neighbor

> checking if Bx(r) contains a hyper-rectangle R is fast Exercise Think of an algorithm
to do it!
> if By(r) D R, then all data points in R are neighbors

K-D TREENEIGHBORRETRIEVAL Algorithm (x, r, T)
Initialize N, = () set of neighbors, R = root(T)
call recursive function PROCESSNODE(x, r, R, N)

PROCESSNODE (x, r, R;, Nr)

if Bx(r) N R;j = 0 return no neighbors in this box
else if Bx(r) D R; all points in R; are neighbors
1. N, < N, UR;
2. return
else if R; is a leaf make explicit comparisons
1. for x' € Dy, if ||x' — x|| < r, N, + N, U {x'}
2. return
else go to the next level

1. call PROCESSNODE (x, r, R; efe; Ny)
2. call PROCESSNODE (x, r, R}, ight; N;)
3. return

Ball Tree and K-D Tree

> K-D trees may become inefficient when data dimension n is large.

» |n that case, we construct Ball Trees

K-D trees Ball trees (M-trees)
iy = Like K-D trees but use balls instead of boxes
P = Works in high dimensions if data non-uniform
|

*Each node of the tree stores bounding box, mean,
variance of data points under it

=Hierarchically divide boxes along their longest
dimension

Hash functions and hash codes

Let the data space be R”, and assume some fixed probability measure on this space.

> A family of hash functions is a set # = {h: R” — {0, 1} } with the following
properties
1. For each h, Pr[h(x) =1] =~ }
2. The binary random variables defined by the functions in H are mutually independent.
(Or, if H is not finite, a “not too large” random sample of such random variables is
mutually independent.)

> Let hy.x be a mutually independent subset of H. We call

g(x) = [m(x) ha(x) ... h(x)] € {0, 1}* (6)
the hash code of x.

> Note that the codes g(x) are (approximately) uniformly distributed; the
probability of any g € {0,1}¥ is about 2%(

> Useful hash functions must be fast to compute.

Hash tables

> A hash table 7 is a data structure in which points in R” can be stored in such a
way that

1. All points with the same code g are in the same bin denoted by 7,. The table need not
use space for empty bins.

2. Given any value g € {0, 1}*, we can obtain a point in T or find if T; = @ in constant
time (independent of the number of points N stored in T).
Some versions of hash tables return all points in 7T, e.g., as a list, in constant time.

3. It is usually assumed that storing a point x with given code g(x) in a hash table is also
constant time.

» Hence, using a hash table to store an x or to retrieve something, involves
computing k hash functions, then a constant-time access to 7T .

» When x’ # x and g(x’) = g(x) we call this a collision. In some applications (not
of interest to us), collisions are to be avoided.

Locality Sensitive Hash Functions and Codes
» A hash function h is locality sensitive iff for any x, x’ € R”
Prih(x) = h(x)] > pr when |lx — x'|| < r)
Pr[h(x) = h(x")] < p2 when ||x — x|| > cr (8)

with p1, p2, r and ¢ > 1 fixed parameters (of the family H) and p1 > p».
> W.lo.g., we set p; = p5 for some p < L.

> A locality sensitive h makes a weak distinction between points that are close in
space vs. points that are far away. A hash code g from locality sensitive hash
functions sharpens this distinction, in the sense that the probability of far away
points colliding can be made arbitrarily small.

poad = Prig(x) = g(x)|lIx = x| > er] < p§ 9

» Assume x is not in T; for any x’ € D which is far from x,the probability that x’
collides with x is < ppaq.

» We construct 7 so that ppayg < ﬁ for N the sample size. For this we need Exercise
(in Homework 1)

In N 1
k = = Prad S (10)
—Inp> N
> Suppose x’ € T is “close” to x. What is the probability that g(x’) = g(x)?
K 1
Pgood = pf = Pf = m (11)

This is the probability that the bin 7,(,) contains x'.

Approximate r-neighbor retrival by LSH

Input
Indexing
Retrieval

D set of N points, L mutually independent hash codes gi.; of dimension k.
Construct L hash tables T%L, each storing D.
Given x
1. compute g(x)
2. forj=1,2,...L
if the bin '7;1(X> #0
2.1 return some (all) x” from it.
2.2 stop if a single neighbor is wanted.

Some analysis. We set L = N”

>

Indexing time oc kNP +1

» Retrieval time o< kNP

>

Space used oc kNPTL

For each x’ € D close to x, the probability that x” is NOT returned for any
jel:Lis
1 a1
1—)V == 12
(=) ~ (12)
This can be made arbitrarily small by multiplying L with a constant.

For each x’ € D far from x, the probability that x’ is NOT returned for any

jel:Lis
1w (NN 1

(1 N) B~ () =~ =1 (13)
Hence, we are almost sure not to return a far point, and have a significant
probability to return a close point when one exists, if no points neither far nor
close are in the data. This is why this algorithm is approximate: it may also
return points with r < ||x’ — x|| < cr.

How to find good hash functions?

v

We need large families of h functions

> that are easy to generate randomly

v

and fast to compute for a given x

v

Generic method to obtain them: random projections

Projecting on a random vector

> Data are x € R” as usual.
> Define h, , : R" — Z by
-
a'x+b
hap(x) = [———] (14)
w
with w > 0 a width parameter, a € R", b € [0, w).

> Intuitively, x is " projected” on al, then the result is quantized into bins of width
w, with a grid origin given by b.

> The family of hash functions is Hw = {h,p, a € R", b € [0, w)}.
> Sampling Hw: a ~ Normal(0, I5), b ~ uniform[0, w).
» Because the Normal distribution is a stable distribution, this ensures that alxis
distributed as Normal(0, ||x||?). Exercise Verify this

> Hence a’ x — a’ x’ is distributed as Normal(0, ||x — x’||?). Exercise Verify this
> Moreover, if hash functions are sampled independently from #,,,(and nothing is known
about x) then h;, p(x), h,/ 4 (x) are independent random variables. Exercise Prove this

> This type of hash functions are being widely used by approximate neighbor search
algorithms.

1ais not necessarily unit length

	The Nearest-Neigbor and kernel predictors
	Neighbor search for large N: K-D trees and ball-trees
	Neighbor search by Locality Sensitive Hashing
	Hash functions and hash tables
	Locality Sensitive Hashing
	Approximate r-neighbor retrival by LSH
	LSH by random projections

