
Lecture 6: Hashing and hash functions

Marina Meilă
mmp@stat.washington.edu

Department of Statistics
University of Washington

April 2019

Implementing a dictionary with an array

I Assume that we need to store pairs (key, data)

I and that the operations to support are Search, Insert, Delete. We call such a
data structure a dictionary.

I Let U be the universe of all possible keys.

I First idea Create array T with size |U|.
I At address k in T , store NIL if no element with key k in dictionary.
I Otherwise store a pointer to (k, data).
I If multiple elements with same key are allowed, store a pointer to a linked list of these

elements.

I Run time (with no duplicate keys) is O(1) for all operations.

I Inefficient if |U| very large (which is typical).

Second idea: hashing

I Assume that n the number of items in the dictionary is much smaller than |U|.
I Second idea: associate each T entry with a set of keys. Hope that only 1 of

them is in dictionary.

I a hash function is
h : U → {0, . . .m − 1} (1)

I Essential assumption h(k) can be computed in constant time.

I The array T has now size m.

I Element (key,data) is stored at h(key) in T .

I Run time: all operations still run in constant time!

Collisions

I When h(k) = h(k ′) and both k, k ′ are keys for dictionary elements, we have a
collision.

I Collisions can be handled with a linked list, as above.

I A good h is a function that ensures that the p of a collision is ≈ 1
m

when the
keys are sampled uniformly from U α = n

m
, known as the load factor

I Let nj be the number of elements at location j in T .

I Run time with collisions: For Insert, assuming insertion at the head of the list
O(1) as before. For Delete, Search, in the worst case, one has to traverse a
list of length nj when h(k) = j . Hence, the run time is O(1 + nj).

I Consider now average run times (assuming keys sampled uniformly as before).
Obviously, E [nj] = n

m
= α. Hence run time for Delete, Search is on average

O(1 + α).

Examples of hash functions

I h(k) = k modm with m a prime

I h(k) = bm frac(kA)c with m any array length (in particular, m can be 2p), and
A < 1 a chosen parameter; frac represents the fractional part of a real number,
and b, c denote the integer part of a number, i.e z = bzc︸︷︷︸

Z

+ frac(z)︸ ︷︷ ︸
[0,1)

.

A family of hash functions

I A universal family of hash functions is a set H = {h : U → {0, . . .m − 1} } with
the following properties

1. For each h ∈ H, Pr [h(k) = j] ≈ 1
m

2. For each pair of distinct keys k, k′, |{h ∈ H | h(k) = h(k′)}| ≤ |H|
m

An example of universal family

I Let p > |U| be a large prime number

I Let a, b ∈ Zp , a 6= 0 and

hab = [(ak + b) mod p] modm (2)

I Then, the family
Hm,p = {hab, with a, b ∈ Zp , a 6= 0} (3)

is universal.

	Hash table
	Universal Hashing

