Lecture 6: Hashing and hash functions

Marina Meilă
mmp@stat.washington.edu

Department of Statistics
University of Washington

April 2019

Implementing a dictionary with an array

- Assume that we need to store pairs (key, data)
- and that the operations to support are Search, Insert, Delete. We call such a data structure a dictionary.
- Let U be the universe of all possible keys.
- First idea Create array T with size $|U|$.
- At address k in T, store NIL if no element with key k in dictionary.
- Otherwise store a pointer to (k, data).
- If multiple elements with same key are allowed, store a pointer to a linked list of these elements.
- Run time (with no duplicate keys) is $\mathcal{O}(1)$ for all operations.
- Inefficient if $|U|$ very large (which is typical).

Second idea: hashing

- Assume that n the number of items in the dictionary is much smaller than $|U|$.
- Second idea: associate each T entry with a set of keys. Hope that only 1 of them is in dictionary.
- a hash function is

$$
\begin{equation*}
h: U \rightarrow\{0, \ldots m-1\} \tag{1}
\end{equation*}
$$

- Essential assumption $h(k)$ can be computed in constant time.
- The array T has now size m.
- Element (key,data) is stored at $h($ key $)$ in T.
- Run time: all operations still run in constant time!

Collisions

- When $h(k)=h\left(k^{\prime}\right)$ and both k, k^{\prime} are keys for dictionary elements, we have a collision.
- Collisions can be handled with a linked list, as above.
- A good h is a function that ensures that the p of a collision is $\approx \frac{1}{m}$ when the keys are sampled uniformly from $U \alpha=\frac{n}{m}$, known as the load factor
- Let n_{j} be the number of elements at location j in T.
- Run time with collisions: For Insert, assuming insertion at the head of the list $\mathcal{O}(1)$ as before. For Delete, Search, in the worst case, one has to traverse a list of length n_{j} when $h(k)=j$. Hence, the run time is $\mathcal{O}\left(1+n_{j}\right)$.
- Consider now average run times (assuming keys sampled uniformly as before). Obviously, $E\left[n_{j}\right]=\frac{n}{m}=\alpha$. Hence run time for Delete, Search is on average $\mathcal{O}(1+\alpha)$.

Examples of hash functions

- $h(k)=k \bmod m$ with m a prime
- $h(k)=\lfloor m \mathrm{frac}(k A)\rfloor$ with m any array length (in particular, m can be 2^{p}), and $A<1$ a chosen parameter; frac represents the fractional part of a real number, and \lfloor,$\rfloor denote the integer part of a number, i.e z=\underbrace{\lfloor z\rfloor}+\underbrace{\text { frac }(z)}$.

A family of hash functions

- A universal family of hash functions is a set $\mathcal{H}=\{h: U \rightarrow\{0, \ldots m-1\}\}$ with the following properties

1. For each $h \in \mathcal{H}, \operatorname{Pr}[h(k)=j] \approx \frac{1}{m}$
2. For each pair of distinct keys $k, k^{\prime},\left|\left\{h \in \mathcal{H} \mid h(k)=h\left(k^{\prime}\right)\right\}\right| \leq \frac{|\mathcal{H}|}{m}$

An example of universal family

- Let $p>|U|$ be a large prime number
- Let $a, b \in \mathbb{Z}_{p}, a \neq 0$ and

$$
\begin{equation*}
h_{a b}=[(a k+b) \bmod p] \bmod m \tag{2}
\end{equation*}
$$

- Then, the family

$$
\begin{equation*}
\mathcal{H}_{m, p}=\left\{h_{a b}, \text { with } a, b \in \mathbb{Z}_{p}, a \neq 0\right\} \tag{3}
\end{equation*}
$$

is universal.

