
STAT 534
Lecture 4

Data Structures–Binary Tree
04/11/19

c©2019 Marina Meilă
mmp@stat.washington.edu

Scribes: Ziyu Jiang, Yikang Shen

1 Binary Trees

1.1 Basic Definitions

In this lecture, we continue our introduction of data structures in addition to
lists and stacks, which we covered in the last lecture. Today we are going to
talk about binary trees.

Binary tree is a type of graph, in which

• Each node has (at most) two distinguished children, the children on the
left is called left child, while the one of the right is called right child.

• Each node has a parent except the top node (which is called root).

Notice that not all roots can have two children. If a node does not have (left or
right) child, the child is called NULL. If a node does not have any child, the
node is called leaf.

1.2 Data Structure Implementations

Every node contains a fixed number of fields of information:

• A pointer to the parent;

• Pointers to the left child and right child or (NULL);

• Information of the node. Key is a particular type of information by which
the node is distinguished and it can be viewed as the “value” of a node.
Additionally, a node can have other types of information.

2 Possible Operations on Binary Trees

Below operations are useful in relation to binary trees:

• List all nodes (in order)

• Find certain values in the tree (search)

1



• Insert nodes

• Delete nodes

• Find the node with maximum or minimum key

2.1 Tree Property

The nodes in a binary tree is not placed in an arbitrary order since they have
to follow the tree property listed as below:

key(z) ≤ key(x) ≤ key(y),∀z ∈ left subtree(x),∀y ∈ right subtree(x) (1)

Under the assumption of distinct key:

key(z) < key(x) < key(y),∀z ∈ left subtree(x),∀y ∈ right subtree(x) (2)

This means that any node in an ordered binary tree should be no greater
than any nodes in its right subtree, nor should it be smaller than any nodes in
its left subtree.

Remark 1: Notice that there can be different ways to arrange the nodes,
depending on the structure of the tree. The largest spanning for a tree is a
chain, where each node can have at most one child.

Remark 2: Since the structure of a tree implies the relations of its con-
stituent nodes, some of the operations (e.g. Insert or Delete) may change struc-
ture of a tree while others do not.

2.2 Sorting

The following recursive algorithm returns the nodes in a sorted order:

The function calls itself, hence the name ”recursive”.
Remark 3: If we want to output the nodes in a decreasing manner, we

can switch the order of searching left and right subtrees.

2.3 Search

Given the pointer to the root node and the key k we would like to search for,
the search function returns the pointer to our desired node or returns NULL
when k is not contained in the tree. Below is a pseudocode for the algorithm:

2



2.4 Insertion

Notice that under the tree property, insertion only happens at the leaf node(which
means a node with no children); In light of this, insertion always happens at
the bottom of a tree and this is sometimes not the most efficient way. Below is
the pseudocode for an algorithm that implements the insertion procedure:

Remark 4: The use of y in the pseudocode is to designate the parent of
z, i.e. the node we want to insert in order to initialize pointers between parent
and child nodes. Lines 9 − 10 of the pseudocode correspond to the case where
we have no parents, i.e. the tree is NULL before insertion.

3 Complexity of Operations on Binary Trees

3.1 Depth of a Binary Tree

The depth of a binary tree is the number of nodes on the longest path between
the root and a leaf.

For the same number of nodes, a chain is the most inefficient tree (with
largest depth), while a balanced tree is the most efficient tree (with smallest
depth). For a balanced tree with depth d, it can contain [2d−1, 2d − 1] nodes.
Therefore, the depth of a binary tree with n nodes is smaller than n (chain), and

3



larger than log2(n + 1) (balanced tree). Also, you can always try to rebalance
a tree.

3.2 Complexity of Sorting

InOrderTreeWalk will print n times and call 2n times. Therefore, the total
number of operations for it is 3n. This number doesn’t depend on the structure
of the tree.

3.3 Complexity of Search

The total number of operations is always smaller than the depth of the tree.
Therefore, this number does depend on the structure of the tree. For the ”av-
erage” case, d = Op(log2n), so is the number of operations for search.

4


