
STAT 534
Lecture 6

Kernel Density Estimation, Regression and Classification
April 18, 2019

c©2019 Marina Meilă
mmp@stat.washington.edu

Scribes: Ruojin He∗, Yikun Zhang∗

1 Introduction

In this lecture, we will discuss Nearest-Neighbor predictors and Kernel Density
Estimation approaches on classification and regression problems.

1.1 Classification and Regression Problem

The classification and regression problems fall in a general category of machine
learning tasks, the so-called supervised learning. Given a random pair (X,Y) ∈
X ×Y, the basic goal in supervised learning is to construct a prediction function
f such that Y = f(X) based on some training data. We often call X the
input, predictor, feature, independent variable, etc., and Y the output, response,
dependent variable, etc. Typically, the input space of X, i.e., X , would simply
be Rd and the training data comprises some (i.i.d.) samples from (X,Y), D =
{(xi, yi) ∈ Rd × Y, i = 1, ..., N}.
The difference between classification and regression problems emerges on the
type of output variables.

• Classification: The output Y is qualitative and assumes values in a finite
set. For instance, Y = {−1, 1}.

• Regression: The output Y is a quantitative measurement, i.e., Y ⊂ R.

In a nutshell, the distinction in output type has led to a naming convention
for the prediction tasks: regression when we predict quantitative outputs, and
classification when we predict qualitative outputs. These two tasks have a
lot in common, and in particular both can be viewed as a task in function
approximation.[1]

1.2 Memory-Based Learning

The main topics of today’s lecture, nearest-neighbor predictors and kernel den-
sity estimation methods, can be classified as examples of memory-based learning

∗Department of Statistics, University of Washington

1

(sometimes called instance-based learning) within the realm of machine learn-
ing. Memory-based learning is based on the assumption that in learning a
cognitive task from experience people do not extract rules or other abstract rep-
resentations from their experience, but reuse their memory of that experience
directly.[2] In other words, it compares new data instances with those seen in the
training data, which have been stored in memory. Since it constructs hypothe-
ses directly from the training instances themselves, the hypothesis complexity
can grow with the data[3]: in the worst case, a hypothesis is a list of n training
items and the computational complexity of classifying a single new instance is
O(n).

1.3 Nonparametric Model

On the other hand, both Nearest-Neighbor predictors and kernel density esti-
mation approaches are some vivid examplifications of nonparametric models,
whose structures are not specified a priori but learned from data. This means
that these statistical models are infinite-dimensional, in the sense that the num-
ber and nature of the parameters are grown with the size of data.

2 Nearest-Neighbor Predictor

Given a training data D = {(xi, yi) ∈ Rd × Y, i = 1, ..., N}, the main idea of
Nearest-Neighbor predictor is to assign the label or value of a new instance x
as follows:

1. Find the example xi that is nearest to x under a certain distance metric,
says Euclidean distance. Mathematically, i = arg min

j∈{1,...,N}
||x− xj ||2

2. Assign x the label or value yi.

In practice, one uses the K nearest neighbors of x (with K = 3, 5 or larger).
Then

• For Classification: f(x) = the most frequent label among K nearest
neighbors (the so-called Majority Vote).

• For Regression: f(x) = 1
K

∑
i neighbor of x

yi = mean of neighbors’ values.

Figure 1 delineates an example when we apply the K-Nearest-Neighbor method
on a binary classification problem, where those solid curves indicate the decision
boundaries of two classifiers. In a binary classification problem, the decision
boundary of a classifier is a hypersurface that partitions the underlying vector
space into two sets, while the classifier will assign all the points on one side of the
decision boundary to one class and all those on the other side to the other class.
Upon the decision boundary, the output label of a classifier is ambiguous.[4] As
shown by Figure 1, K serves as the smoothing parameter of the K-Nearest-
Neighbor classifier, since the decision boundary becomes smoother as the value

2

of K increases.

Remark. The decision boundary for a K-Nearest-Neighbor classifier is piece-
wise linear.

(a) 1-Nearest-Neighbor (b) 15-Nearest-Neighbor

Figure 1: A Binary Classification Problem Using 1-Nearest-Neighbor and 15-
Nearest-Neighbor Classifiers with Decision Boundaries[1]

3 Kernel Density Estimation

Let x1, ..., xN ∈ Rd be an independent, identically distributed random sample
from an unknown distribution P with density function p. Then the Kernel
Density Estimation can be expressed as

p̂n(x) =
1

Nhd

N∑
i=1

b

(
x− xi

h

)
,

where b : Rd → R is a smooth function such that b(x) ≥ 0 and[5]∫
b(x)dx = 1,

∫
x · b(x)dx = 0, and σ2

b ≡
∫
x2 · b(x)dx > 0,

and h > 0 is the bandwidth parameter that controls the amount of smoothing.
b is called a kernel function. Two common examples of b(x) are[6]

(Gaussian kernel) b(x) =
exp(− ||x||

2

2)

v1,d
, v1,d =

∫
exp

(
−||x||

2

2

)
dx,

(Spherical Kernel) b(x) =
I(||x|| ≤ 1)

v2,d
, v2,d =

∫
I(||x|| ≤ 1)dx.

3

Optional requirements on b are: (i) symmetric with respect to x and xi, that

is, b(x, xi) = b(xi, x) = b
(
x−xi

h

)
; (ii) Radial symmetry; (iii) bounded support;

(iv) higher order smoothness conditions, etc.
As with kernel regression, the choice of kernel b is not crucial, but the choice

of bandwidth h is important.[5] Figure 2 shows density estimates with several
different bandwidths using a part of the NACC (National Alzheimers Coordi-
nating Center) Uniform Dataset, version 3.0 (March 2015).[6]

Figure 2: Kernel Density Estimation on Part of NACC Data. Left panel: un-
dersmoothed. Middle panel: just right (bandwidth chosen by the default rule in R)†.
Right panel: oversmoothed.

Roughly speaking, the computational cost of kernel density estimation is
O(Nd), since we need to calculate the (Euclidean) distance of two d-dimensional
data points. In Section 5 and subsequent lectures, we will introduce several
efficient neighbor searching methods when the number of data points N is large.

4 Kernel Regression and Classification

4.1 Kernel Regression

In any kernel regression setting, the conditional expectation of the response Y
relative to the input X can be written as

f(X) = E(Y |X).

As for a training data with i.i.d. samples D = {(xi, yi) ∈ Rd × R, i = 1, ..., N},
we can always write

yi = f(xi) + εi, i = 1, ..., n,

where εi, i = 1, ..., n are i.i.d. random errors with mean zero. Like the K-
Nearest-Neighbor approach, the kernel regression interpolates the value of a
new data instance based on the neighbor values of this instance, but in a more

†For instance, see https://stat.ethz.ch/R-manual/R-devel/library/stats/html/

bandwidth.html for details

4

https://stat.ethz.ch/R-manual/R-devel/library/stats/html/bandwidth.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/bandwidth.html

“smoothed” way. Suppose that bh(x, xi) = b
(
x−xi

h

)
, where b is a kernel function

defined in Section 3. Then the kernel regressor can be written as

f̂(x) =

N∑
i=1

βi(x) · bh(x, xi) · yi,

where βi’s are coefficients. If we estimate f as a locally weighted average, i.e.,
N∑
i=1

βibh(x, xi) = 1, then βi = 1
N∑

j=1
bh(x,xj)

, j = 1, ..., N and the estimator becomes

f̂(x) =

N∑
i=1

bh(x, xi)∑N
j=1 bh(x, xj)

· yi,

which is the well-known Nataraya-Watson kernel estimator.[5] In this esti-
mator (or regressor), f̂(x) is always a convex combination of yi’s and the weights
are proportional to bh(x, xi).

Remark. The Nataraya-Watson estimator is biased if the density of X varies
around x.

To alleviate the biased problems for kernel estimators, one can resort to a
generalization of kernel regression called local linear regression. The procedures
go as follows.

1. Given a query point x, compute the weight function wi = bh(x, xi) for all
i = 1, ..., N .

2. Solve the weighted sums of squares min
β,β0

N∑
i=1

wi(y
i − βTxi − β0)2 to

obtain β, β0 (β, β0 depend on x through wi).
‡

3. Calculate f̂(x) = βTx+ β0.

Remark. The Nataraya-Watson estimator solves a local linear regression with
fixed β = 0.

4.2 Kernel (Binary) Classification

Given the training data D = {(xi, yi) ∈ Rd × {Class1, Class2}, i = 1, ..., N},
we can encode the binary responses yi’s into {−1, 1}. Then the kernel binary
classifier can be written as

f̂(x) ∝
N∑
i=1

yi · b
(
x− xi

h

)
,

‡See section 5.4 in [5] for detailed calculation.

5

where b is a kernel function defined in Section 3. The prediction is based on the
sign of f̂(x), i.e.,

y(x) =

{
1 (or Class 1) if f̂(x) > 0,

−1 (or Class 2) if f̂(x) < 0.

The plug-in estimator {x ∈ Rd : f̂(x) = 0} of the solution manifold {x ∈
Rd : f(x) = 0} is the decision boundary of the kernel classifier. In addition,
the decision boundary for a kernel binary classifier can be viewed as a plug-in
estimator of the density level-set at level 0, for which asymptotic properties and
visualization techniques have been analyzed and proposed. See [7] for details.

5 K-D Trees & Ball Trees

Both K-Nearest-Neighbor and kernel prediction methods involve scanning the
whole dataset for every single prediction. Given training data D = {(xi, yi) ∈
Rd × Y, i = 1, ..., N},

• for K-Nearest Neighbor, predicting f(x) for a single new instance x in-
volves computing N distances in a d-dimensional space. The computa-
tional cost is approximately O(Nd).

• for kernel methods, finding the data points within the support of the kernel
function, usually a d-dim ball with radius r, also involves computing the
distances of a single x to all training data points.

The neighbor search (or computing pairwise distances of training data points)
is a polynomial-time process but still computational expensive, especially when
the dimension d is high. Can we design some algorithms that are more efficient?
The answer is Yes, if we index (i.e. preprocess) the training data. Indexing
here means organizing the data in a way that makes finding the neighbors of
any given point fast. In particular, with indexing, searching neighbors of a given
point x does not require comparing x with all N data points.
The examples of indexing methods include,

• K-D trees

• Ball trees

• A-D trees (for discrete data)

• Locality Sensitive Hashing

• ... (many other methods with guarantees)

5.1 K-D Trees

A K-D tree (short for k-dimensional tree) is a binary tree whose leaf nodes
are k-dimensional points and every non-leaf node corresponds to an implicit
partition of the data space into two hyper-rectangular regions. Given a data

6

set D = {(xi, yi) ∈ Rd × Y, i = 1, ..., N} (yi’s would not be used in the tree
construction), each node j stores:

• a subset of the data Dj ⊂ D
• a d-dimensional rectangle with Rj = (rj,min, rj,max), j = 1, ..., d, where
rj,min = min

Dj

xij , rj,max = max
Dj

xij

• other statistics of Dj , such as the number of nodes, mean, median, vari-
ance, etc.

Since there are many possible ways to choose axis-aligned splitting planes, there
exist many different ways to construct a K-D tree for any given data set. Al-
gorithm 1 illustrates a version of K-D tree construction in which the longest
dimension of Rj would be split.

Algorithm 1 K-D Tree Construction

Input: (labeled) training set D (labels are not used in the tree construction)
Initialize the tree root R0 with D0 = D
while Leaf nodes can be split do

Choose a leaf node j with |Dj | > N0 points (N0 is a threshold)

1. Find the longest dimension of Rj , i.e., k = arg max
j=1,...,d

(rj,max − rj,min) and

set r = (rk,max − rk,min)/2.

2. Split Dj into Dj,left and Dj,right with xi ∈ Dj,left iff xik ≤ r, xik ∈ Dj .
3. Create new leaves Rj,left, Rj,right storing Dj,left,Dj,right and their re-

spective bounding boxes and other statistics.

end while

(a) A K-D Tree and Construction Proce-
dures

(b) An Example of Ball Trees

Figure 3: K-D Trees and Ball Trees

7

Figure 3a shows an example of KD trees and construction procedures. If
a balanced K-D tree (i.e., the maximal number of levels below the root is as
small as possible) is required, one can cycle through the axes used to select the
splitting planes. For example, in a 3-dimensional tree, the root would have an
x-aligned plane, the root’s children would both have y-aligned planes, the root’s
grandchildren would all have z-aligned planes, the root’s great-grandchildren
would all have x-aligned planes, the root’s great-great-grandchildren would all
have y-aligned planes, and so on.[8]

5.2 Nearest Neighbor Search via K-D Tree

The nearest neighbour search algorithm aims to find the point in the data set
that is nearest to a given query point. This search can be done efficiently
by using the tree properties to quickly eliminate large portions of the search
space.[9]

Given a query point x, a search radius r, and a data set D indexed by a K-D
tree T , we aim to find all the points in D that are in the ball Bx(r) = {xi ∈ D :
||xi − x|| ≤ r} (i.e., the r-neighbors of x).
The efficiency of nearest neighbor search via K-D trees is guaranteed by the
following observations:

• Checking if Bx(r) intersects with a hyper-rectangle R is fast. =⇒ If
Bx(r) ∩R = ∅, then no data points in R can be neighbors of x.

• Checking if Bx(r) contains a hyper-rectangle R is fast. A naive algorithm
is to compute the distances of all the vertices to x and check whether they
are all ≤ r. =⇒ If Bx(r) ⊃ R, then all data points in R are neighbors.

Algorithm 2 presents a way to retrieve nearest neighbors of a query point x via
a pre-constructed K-D tree.

Nearest-Neighbor search via K-D trees may exhibit inefficiency when the
data dimension d is large, since the data points are far away from each other
in high dimensional space. In this case, most of the points in the tree will
be evaluated and nearest-neighbor search via K-D trees will end up being a
needlessly fancy brute search. One remedy to this issue is to construct Ball
Trees, where every node defines a d-dimensional ball containing a subset of
the points to be searched. Several existing ball tree construction algorithms are
available at [10]. Figure 3b shows an example of ball trees.

References

[1] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The Element
of Statistical Learning: Data Mining, Inference, and Prediction. Second
Edition. Springer Series in Statistics. Springer-Verlag New York, 2009.

8

Algorithm 2 K-D Tree Neighbors Retrieval Algorithm

Input: (x, r, T), where x is a query point, r is a search distance, and T is a
K-D tree.
Initialize the set of neighbors Nr = ∅, R = root(T)
Call the function ProcessNode(x, r,R,Nr) recursively

ProcessNode(x, r,R,Nr):
if Bx(r) ∩Rj = ∅ then

return
else if Bx(r) ⊃ Rj then

Nr ← Nr ∪Rj
return

else if Rj is a leaf then
for xi ∈ Dj , if ||x− xi|| ≤ r,Nr ← Nr ∪ {xi}
return

else
call ProcessNode(x, r,Rj,left, Nr)
call ProcessNode(x, r,Rj,right, Nr)
return

end if

[2] Walter Daelemans and Antal van den Bosch. Memory-Based Language
Processing. New York, NY, USA: Cambridge University Press, 2009.

[3] Stuart Russell and Peter Norvig. Artificial Intelligence: A Modern Ap-
proach. Third Edition. Upper Saddle River, NJ, USA: Prentice Hall Press,
2009.

[4] Wikipedia Contributors. Decision boundary. [Online; Accessed 20-April-
2019]. 2018. url: https://en.wikipedia.org/wiki/Decision_boundary.

[5] Larry Wasserman. All of Nonparametric Statistics (Springer Texts in Statis-
tics). Berlin, Heidelberg: Springer-Verlag, 2006.

[6] Yen-Chi Chen. “A tutorial on kernel density estimation and recent ad-
vances”. In: Biostatistics & Epidemiology 1.1 (2017), pp. 161–187.

[7] Yen-Chi Chen, Christopher R. Genovese, and Larry Wasserman. “Density
Level Sets: Asymptotics, Inference, and Visualization”. In: Journal of the
American Statistical Association 112.520 (2017), pp. 1684–1696. eprint:
https://doi.org/10.1080/01621459.2016.1228536.

[8] Mark de Berg et al. “Orthogonal Range Searching”. In: Computational
Geometry: Algorithms and Applications. Springer Berlin Heidelberg, 1997,
pp. 93–117. url: https://doi.org/10.1007/978-3-662-03427-9_5.

[9] Wikipedia Contributors. k-d tree. [Online; Accessed 20-April-2019]. 2019.
url: https : / / en . wikipedia . org / wiki / K - d _ tree # cite _ note -

compgeom-2.

9

https://en.wikipedia.org/wiki/Decision_boundary
https://doi.org/10.1080/01621459.2016.1228536
https://doi.org/10.1007/978-3-662-03427-9_5
https://en.wikipedia.org/wiki/K-d_tree#cite_note-compgeom-2
https://en.wikipedia.org/wiki/K-d_tree#cite_note-compgeom-2

[10] Stephen M. Omohundro. Five Balltree Construction Algorithms. 1989.
url: ftp://ftp.icsi.berkeley.edu/pub/techreports/1989/tr-
89-063.pdf.

10

ftp://ftp.icsi.berkeley.edu/pub/techreports/1989/tr-89-063.pdf
ftp://ftp.icsi.berkeley.edu/pub/techreports/1989/tr-89-063.pdf

	Introduction
	Classification and Regression Problem
	Memory-Based Learning
	Nonparametric Model

	Nearest-Neighbor Predictor
	Kernel Density Estimation
	Kernel Regression and Classification
	Kernel Regression
	Kernel (Binary) Classification

	K-D Trees & Ball Trees
	K-D Trees
	Nearest Neighbor Search via K-D Tree

