STAT 534

Lecture 6

Disjoint Sets and Connected Component

23 Apr 2019
(C)2019 Marina Meilă
mmp@stat.washington.edu
Scribes: Fengjie Chen, Yiwei Zhang

1 Notation of Graph

A graph G consists of a set of nodes V, and a set of edges E, where each edge is a pair of nodes. In an undirected graph an edge is denoted as $\{u, v\}$ (order does not matter), whereas in a directed graph an edge is an ordered pair (u, v) with the edge pointing from u to v.

Some common concepts of graph are defined as follows:

- $G=<V, E>, n:=|V|, m:=|E|$
- A path $\left(x, z_{1}, z_{2}, \ldots, z_{k}, y\right)$ from x to y in $G=<V, E>$ is valid, if $\left(x, z_{1}\right),\left(z_{1}, z_{2}\right), \ldots,\left(z_{k-1}, z_{k}\right),\left(z_{k}, y\right) \in E$
- $S \subseteq V$ is called connected set $\Leftrightarrow \forall x, y \in S$, there exists a path in E between x and y. (Not only x to y, but also y to x in directed graph)
- $S \subseteq V$ is called connected component $\Leftrightarrow S$ is connected and maximal $\Leftrightarrow \nexists S^{\prime} \subseteq V, S \subset S^{\prime}$, and S^{\prime} connected
- A graph G is connected \Leftrightarrow its set of nodes V is connected
- (Exercise) Suppose $S, S^{\prime} \subset V$ are connected components, proof: $S \neq$ $S^{\prime} \Rightarrow S \cap S^{\prime}=\emptyset$. Also, $V=S_{1} \cup S_{2} \cup . . \cup S_{k}$, this decomposition is unique if $S_{i}(i=1, . ., k)$ is connected components. And connectedness is an equivalence relation.

2 Connected Components

Given $G=<V, E>$ an undirected graph, how to find all connected components in an efficient way? A sketch of algorithm is presented in Algorithm 1.

```
Algorithm 1 Find all Connected Components(C.C.)
    Input: \(G=<V, E>\)
    Output: \(\left\{S_{1}, S_{2}, \ldots, S_{K}\right\}\) C.C., such that \(V=S_{1} \cup S_{2} \cup \ldots \cup S_{K}\)
    Init: \(k \leftarrow n, S_{i} \leftarrow\{i\}\) for \(\forall i \in V\)
    for \((x, y) \in E\) do
        if \(S_{x}=F I N D-S E T(x) \neq F I N D-S E T(y)=S_{y}\) then
            \(S \leftarrow S_{x} \cup S_{y}\)
            delete \(S_{x}, S_{y}, k \leftarrow k-1\)
        end if
    end for
    Return \(\left\{S_{1}, S_{2}, \ldots, S_{K}\right\}\)
```

Now we need efficient realizations of $\operatorname{FIND}-S E T(x)$ and $U N I O N-S E T(x)$.

2.1 Realization using doubly-linked list

One way is to use doubly-linked list. Suppose we realize a class named NODE with four attributes:

- representative (R) : point to the head of list, which is representative of S_{x}
- data: a place to cache data attached to the node
- prev: point to nearest previous node
next: point to next node
Let FIND-SET(x) simply returns $x . R$, and $S_{x} \cup S_{y}$ makes S_{y} append to the head of $S_{x} \cdot \operatorname{tail}\left(S_{y}\right) \cdot n e x t=S_{x}$, and $S_{x} \cdot \operatorname{prev}=\operatorname{tail}\left(S_{y}\right)$. Also, update representative of nodes in list $\left(S_{x}\right)$ to point to S_{y}.
An example shown in class is presented below. In the example, $V=\{A, B, C, D, E, F, G\}$, $E=\{A B, A D, B C, F G, E G\}$. The following six tables show how those attributes vary during the execution.

step0	A	B	C	D	E	F	G
R	A	B	C	D	E	F	G
prev	-	-	-	-	-	-	-
next	-	-	-	-	-	-	-

step1	A	B	C	D	E	F	G
R	B	B	C	D	E	F	G
prev	B	-	-	-	-	-	-
next	-	A	-	-	-	-	-

step2	A	B	C	D	E	F	G
R	D	D	C	D	E	F	G
prev	B	D	-	-	-	-	-
next	-	A	-	B	-	-	-

step3	A	B	C	D	E	F	G
R	C	C	C	C	E	F	G
prev	B	D	-	C	-	-	-
next	-	A	D	B	-	-	-

step4	A	B	C	D	E	F	G	step5	A	B	C	D	E	F	G
R	C	C	C	C	E	G	G								
prev	B	D	-	C	-	G	C	C	C	C	G	G	G		
next	-	A	D	B	-	-	F	nevev	B	D	-	C	F	G	-
next	-	A	D	B	-	E	F								

In this realization, FIND-SET takes $O(1)$ time, while UNION-SET takes $O(n)$ time in worst case.

2.2 Realization using tree structure

Using doubly linked list for a graph with $|S|=v$ takes $O\left(l^{2}\right)$ runtime for updating representatives. To avoid a long time, use tree structure. Below is an example of a tree structure.

The root of the tree T is the representative, and points to itself.
The rank of each node is the longest length from it to the leaf in its subtree, hence for leaves, rank is 0 .

