STAT 534

Lecture 6

Disjoint Sets and Connected Component

23 Apr 2019 ©2019 Marina Meilă mmp@stat.washington.edu Scribes: Fengjie Chen, Yiwei Zhang

1 Notation of Graph

A graph G consists of a set of nodes V, and a set of edges E, where each edge is a pair of nodes. In an undirected graph an edge is denoted as $\{u, v\}$ (order does not matter), whereas in a directed graph an edge is an ordered pair (u, v) with the edge pointing from u to v.

Some common concepts of graph are defined as follows:

- $G = \langle V, E \rangle, n := |V|, m := |E|$
- A path $(x, z_1, z_2, ..., z_k, y)$ from x to y in $G = \langle V, E \rangle$ is valid, if $(x, z_1), (z_1, z_2), ..., (z_{k-1}, z_k), (z_k, y) \in E$
- $S \subseteq V$ is called *connected set* $\Leftrightarrow \forall x, y \in S$, there exists a *path* in *E* between x and y. (Not only x to y, but also y to x in *directed* graph)
- $S \subseteq V$ is called *connected component* $\Leftrightarrow S$ is *connected* and *maximal* $\Leftrightarrow \nexists S' \subseteq V, S \subset S'$, and S' *connected*
- A graph G is connected \Leftrightarrow its set of nodes V is connected
- (Exercise) Suppose $S, S' \subset V$ are connected components, proof: $S \neq S' \Rightarrow S \cap S' = \emptyset$. Also, $V = S_1 \cup S_2 \cup .. \cup S_k$, this decomposition is unique if $S_i(i = 1, .., k)$ is connected components. And connectedness is an equivalence relation.

2 Connected Components

Given $G = \langle V, E \rangle$ an *undirected* graph, how to find all connected components in an efficient way? A sketch of algorithm is presented in **Algorithm 1**.

Algorithm 1 Find all Connected Components(C.C.)

1: Input: $G = \langle V, E \rangle$ 2: Output: $\{S_1, S_2, ..., S_K\}$ C.C., such that $V = S_1 \cup S_2 \cup ... \cup S_K$ 3: Init: $k \leftarrow n, S_i \leftarrow \{i\}$ for $\forall i \in V$ 4: for $(x, y) \in E$ do 5: if $S_x = FIND$ -SET $(x) \neq FIND$ -SET $(y) = S_y$ then 6: $S \leftarrow S_x \cup S_y$ 7: delete $S_x, S_y, k \leftarrow k - 1$ 8: end if 9: end for 10: Return $\{S_1, S_2, ..., S_K\}$

Now we need efficient realizations of FIND-SET(x) and UNION-SET(x).

2.1 Realization using doubly-linked list

One way is to use *doubly-linked list*. Suppose we realize a *class* named NODE with four attributes:

- representative(R): point to the head of list, which is representative of S_x
- *data*: a place to cache data attached to the node
- *prev*: point to nearest previous node *next*: point to next node

Let FIND-SET(x) simply returns x.R, and $S_x \cup S_y$ makes S_y append to the head of S_x . $tail(S_y)$.next= S_x , and S_x .prev= $tail(S_y)$. Also, update representative of nodes in $list(S_x)$ to point to S_y .

An example shown in class is presented below. In the example, $V = \{A, B, C, D, E, F, G\}$, $E = \{AB, AD, BC, FG, EG\}$. The following six tables show how those attributes vary during the execution.

step0	Α	В	С	D	Е	F	G	step1	Α	В	С	D	Е	F	G
R	Α	В	С	D	Е	F	G	R	В	В	С	D	Е	F	G
prev	-	-	-	-	-	-	-	prev	В	-	-	-	-	-	-
next	-	-	-	-	-	-	-	next	-	Α	-	-	-	-	-

step2	Α	В	С	D	Е	F	G	step3	Α	В	С	D	E	F	G
R	D	D	С	D	Е	F	G	R	С	С	С	C	E	F	G
prev	В	D	-	-	-	-	-	prev	В	D	-	C	-	-	-
next	-	A	-	В	-	-	-	next	-	Α	D	В	-	-	-

step4	A	В	C	D	E	F	G	step5	A	B	C	D	E	F	G
R	С	C	C	С	E	G	G	R	C	C	C	C	G	G	G
prev	В	D	-	C	-	G	-	prev	B	D	-	C	F	G	-
next	-	A	D	В	-	-	F	next	-	A	D	В	-	E	F

In this realization, FIND-SET takes O(1) time, while UNION-SET takes O(n) time in worst case.

2.2 Realization using tree structure

Using doubly linked list for a graph with |S| = v takes $O(l^2)$ runtime for updating representatives. To avoid a long time, use tree structure. Below is an example of a tree structure.

The root of the tree T is the *representative*, and points to itself. The *rank* of each node is the longest length from it to the leaf in its subtree, hence for leaves, rank is 0.