STAT 534
Lecture 6
Disjoint Sets and Connected Component

23 Apr 2019
(©2019 Marina Meila
mmp@stat.washington.edu
Scribes: Fengjie Chen, Yiwei Zhang

1 Notation of Graph

A graph G consists of a set of nodes V', and a set of edges E, where each edge
is a pair of nodes. In an undirected graph an edge is denoted as {u,v} (order
does not matter), whereas in a directed graph an edge is an ordered pair (u,v)
with the edge pointing from u to v.

Some common concepts of graph are defined as follows:
e G=<V,E> n:=|V|,m:=|E|

o A path (xz,z1, 29, ..., 2k,y) from z to y in G =< V, E > is valid,
if (z,21),(21,22)y oy (2k—1, 2k), (2k,y) € E

e S C V is called connected set < Vx,y € S, there exists a path in E
between z and y. (Not only z to y, but also y to z in directed graph)

e S C V is called connected component < S is connected and mazximal
S 3S CV,SCS,and S connected

A graph G is connected < its set of nodes V is connected

(Exercise) Suppose S, S C V are connected components, proof: S #
S = 5nS =0. Also, V = 51U Sy U ..U Sk, this decomposition is
unique if S;(i = 1,.., k) is connected components. And connectedness is an
equivalence relation.

2 Connected Components

Given G =< V, E > an undirected graph, how to find all connected components
in an efficient way? A sketch of algorithm is presented in Algorithm 1.

Algorithm 1 Find all Connected Components(C.C.)
: Input: G =<V, E >
: Output: {S1,S52,...,5k} C.C., such that V =5 U Sy, U...U Sk
: Init: k< n, S; « {i} forVieV
: for (z,y) € E do
if S, = FIND-SET(z) # FIND-SET(y) = S, then
S+ S U8,
delete S, Sy, k+ k —1
end if
end for
: Return {51, S2, ..., Sk }

© X NPT R W

—
=]

Now we need efficient realizations of FIND-SET(z) and UNION-SET(z).

2.1 Realization using doubly-linked list

One way is to use doubly-linked list. Suppose we realize a class named NODE
with four attributes:

e representative(R): point to the head of list, which is representative of S,
e data: a place to cache data attached to the node

e prev: point to nearest previous node
next: point to next node

Let FIND-SET(z) simply returns z.R, and S, US, makes S, append to the head

of Sy. tail(S,)next=S,, and S;.prev=tail(S,). Also, update representative of

nodes in list(S;) to point to S,,.

An example shown in class is presented below. In the example, V = {A, B,C, D, E, F,G},
E = {AB,AD,BC,FG,EG}. The following six tables show how those at-
tributes vary during the execution.

step0 | A|B|C|D|E|F |G|/ stepl | A|B|C|D|E|F|G
R A|B|C|D|E|F |G R B|B|C|D|E|F|G
prev | - | - | - | - |- |-|- prev | B | - | - |-1|-1]-1]-
next | - | - | - | -1]-1]-/|- next | - | A| - |- |- |-]-
step2 | A|B|C|D|E|F | G||lstep3|A|B|C|D|E|F|G
R D|ID|C|D|E|F|G R C|C|C|C|E|F|G
prev | B | D |- |- |-]|-1]- prev |B|D|-|C|-1]-]-
next | - |A| - | B|-|-]- next | - |A|D|B|-|-] -

stepd | A|B|C|D|E|F |G|/ stepp|A|B|C|D|E]|F|G

R C|C|C|C|E|G]|G R c|clj|c|Cc|G|G|G
prev |B|D|-|C|-]G]| - prev |[B|D|-|C|F |G| -
next | - |A|D|[B|-|-|F next | - |A|D|B|-|E]|F

In this realization, FIND-SET takes O(1) time, while UNION-SET takes O(n)
time in worst case.

2.2 Realization using tree structure

Using doubly linked list for a graph with |S| = v takes O(I?) runtime for up-
dating representatives. To avoid a long time, use tree structure. Below is an
example of a tree structure.

rankZ

rank | rank o

rank 0

The root of the tree T is the representative, and points to itself.
The rank of each node is the longest length from it to the leaf in its subtree,
hence for leaves, rank is 0.

