
STAT 534
Lecture 6

Disjoint Sets and Connected Component
23 Apr 2019

c©2019 Marina Meilă
mmp@stat.washington.edu

Scribes: Fengjie Chen, Yiwei Zhang

1 Notation of Graph

A graph G consists of a set of nodes V , and a set of edges E, where each edge
is a pair of nodes. In an undirected graph an edge is denoted as {u, v} (order
does not matter), whereas in a directed graph an edge is an ordered pair (u, v)
with the edge pointing from u to v.

Some common concepts of graph are defined as follows:

• G =< V,E >, n := |V |, m := |E|

• A path (x, z1, z2, ..., zk, y) from x to y in G =< V,E > is valid,
if (x, z1), (z1, z2), ..., (zk−1, zk), (zk, y) ∈ E

• S ⊆ V is called connected set ⇔ ∀x, y ∈ S, there exists a path in E
between x and y. (Not only x to y, but also y to x in directed graph)

• S ⊆ V is called connected component ⇔ S is connected and maximal
⇔ @S′ ⊆ V , S ⊂ S

′
, and S

′
connected

• A graph G is connected ⇔ its set of nodes V is connected

• (Exercise) Suppose S, S
′ ⊂ V are connected components, proof: S 6=

S
′ ⇒ S ∩ S

′
= ∅. Also, V = S1 ∪ S2 ∪ .. ∪ Sk, this decomposition is

unique if Si(i = 1, .., k) is connected components. And connectedness is an
equivalence relation.

1



2 Connected Components

Given G =< V,E > an undirected graph, how to find all connected components
in an efficient way? A sketch of algorithm is presented in Algorithm 1.

Algorithm 1 Find all Connected Components(C.C.)

1: Input: G =< V,E >
2: Output: {S1, S2, ..., SK} C.C., such that V = S1 ∪ S2 ∪ ... ∪ SK

3: Init: k ← n, Si ← {i} for ∀i ∈ V
4: for (x, y) ∈ E do
5: if Sx = FIND-SET(x) 6= FIND-SET(y) = Sy then
6: S ← Sx ∪ Sy

7: delete Sx, Sy, k ← k − 1
8: end if
9: end for

10: Return {S1, S2, ..., SK}

Now we need efficient realizations of FIND-SET(x) and UNION-SET(x).

2.1 Realization using doubly-linked list

One way is to use doubly-linked list. Suppose we realize a class named NODE
with four attributes:

• representative(R): point to the head of list, which is representative of Sx

• data: a place to cache data attached to the node

• prev : point to nearest previous node
next : point to next node

Let FIND-SET(x) simply returns x.R, and Sx∪Sy makes Sy append to the head
of Sx. tail(Sy).next=Sx, and Sx.prev=tail(Sy). Also, update representative of
nodes in list(Sx) to point to Sy.

An example shown in class is presented below. In the example, V = {A,B,C,D,E, F,G},
E = {AB,AD,BC,FG,EG}. The following six tables show how those at-
tributes vary during the execution.

step0 A B C D E F G
R A B C D E F G

prev - - - - - - -
next - - - - - - -

step1 A B C D E F G
R B B C D E F G

prev B - - - - - -
next - A - - - - -

step2 A B C D E F G
R D D C D E F G

prev B D - - - - -
next - A - B - - -

step3 A B C D E F G
R C C C C E F G

prev B D - C - - -
next - A D B - - -

2



step4 A B C D E F G
R C C C C E G G

prev B D - C - G -
next - A D B - - F

step5 A B C D E F G
R C C C C G G G

prev B D - C F G -
next - A D B - E F

In this realization, FIND-SET takes O(1) time, while UNION-SET takes O(n)
time in worst case.

2.2 Realization using tree structure

Using doubly linked list for a graph with |S| = v takes O(l2) runtime for up-
dating representatives. To avoid a long time, use tree structure. Below is an
example of a tree structure.

The root of the tree T is the representative , and points to itself.
The rank of each node is the longest length from it to the leaf in its subtree,
hence for leaves, rank is 0.

3


