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1 Background

(Discrete time) Markov chains: a term used to represent a stochastic process

Stochastic process Xtt∈Z

• A collection of random variables t (t is an index) contained in some state
space S

– E.g. t = time

• Z is the set of positive integers

Going to assume the state space S is finite

• Is a set of states which Xt can take for Xt ∈ S

We’re going to assume we can describe this situation by the Markov property

• Says for any t ∈ Z, we have that Xt ⊥⊥ Xs|Xt−1, where s ∈ 1, , t− z

• Equivalent to Xt ⊥⊥ Xs|Xr

– Where s < r < t

– If you give me any event in the past, then it doesn’t matter what
happened before that event

– Can prove this from the first statement with induction

• Probability distribution at Xt is completely defined by previous state

Markov chain is one of the simplest types of graphical models
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2 State space S

State space S, e.g. S = {1, 2, 3}

• These are the nodes/states

pi(t) = P (Xt = i)

• At time t our chain is in state i

• If I’m in state t, assuming I started at t=0, weve gone through t transitions
to get here

• Even if transition probabilities are well-defined, might not be easy to think
about where I am after t transitions

Full probability vector = p(t) = (pi(t), ..., pm(t))

• m is the cardinality of the state space S; m = |S|

m∑
i=1

pi(t) = 1

• = probability Xt is in the state space

p(0) = initial probability

• Our model involves looking at what happened before, and coming up with
a probability distribution based on that

• But nothing happens before the initial point, so this gets a special name

• To estimate this, need several chains, assume independence of the chains,
etc.

Transition probabilities = aij(t) = P (Xt = j|Xt−1 = i)

• How would I write P (X1, X2, X3) as a conditional (in general, not for
Markov chains)

– = P (X2|X0, X1)P (X1|X0)P (X0)

Can define entire probability distribution based on 1 step transitions b/c
this is a Markov chain
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3 Transition probability matrix (TPM)

Usually denoted as A
[aij ]

m
i,j=1

• TPM= matrix of all of these aijs, from 1 to m

m∑
j=1

aij = 1

• The sum over all js of aij = 1

• This is how you know its the rows that represent probability distributions

– Each row sums to 1 if we sum over the columns

– Rows = i, columns = j

aij ≥ 0

• Any matrix that has the above form and property and the additional
constraint that all aij ≥ 0 is called a stochastic matrix

– b/c it defines a set of probability distributions

• No negatives: cant have negative probabilities

Rows = initial state, columns = state you wind up in

4 (Ir)reducibility

Reducible if ∃ i, j ∈ SxS s.t.P (Xt = j|Xs = i) = 0∀s < t, i 6= j

• Means if I’m ever in state i, at any time, I can’t get to state j, no matter
what

– b/c this is for all s <t, this isn’t for t-1

– means theres no path in the graph from i to j

When a chain is reducible, we have two disjoint subsets of the state space

• if we start in one set we stay in that set forever
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5 Periodicity

A Markov chain is periodic if ∃ i ∈ S s.t.P (Xt+t = i|Xt = i) for t > 0, t 6=
kt0, k = 1, 2, , and t0 > 1

• t0 and k are each any positive integer > 1, t is any integer > 0

– t 6= kt0 means holds for all t′ that aren’t multiples of t0

• starting at state i, probability of being back in state i t units later

• in a general situation maybe I can get back to state I in 3 steps, or 4 steps,
or whatever

• but maybe I have a weird chain w/ periodic behavior, where I cant get
back to I in an odd number of steps, ever; that’s a periodic chain

• the transition probalbity matrix A defines a periodic chain:

– A = {010}{001}{100}
– Is just a loop; if I start at state 1, I can only get back there in 3 steps

Aperiodic chain is not periodic

A chain that is aperiodic and irreducible and homogeneous is ergodic

• We like Markov chains to be Eergodic

• Homogeneous chains:

– Notation were using is aij(t), but we can drop the t b/c these transi-
tion probabilities dont depend on t; transition matrix A isnt indexed
by t

6 Ergodicity

p(t+ 1)

• Probability distribution of all of the states at time t+1

• Lets consider only p(t)

• What is p(t+ 1) in terms of p(t)?

– We know state distribution at p(t), using induction we figure out
p(t+1), and do that for all t, using the Markov property

How do I build up to pj(t+ 1)
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• Probability Im in state j at time t+1

• = P (Xt+1 = j)

• =
m∑
i=1

P (Xi)aij =
m∑
i=1

pi(t)aij

– i 6= j

– Is saying I could be in any of the m states at time t

– For any of those m states pi(t) is probability Im in that state

– (aij) = probability I go from that state to j

∗ If I sum over all those possibilities I get the probability I’m in
state j at time t

– Probability of going from i to j, times probability of starting in i

– Summed over all m states that you could go to j from

Can write this in vector notation, assuming these are row vectors

• pi(t+ 1) = p(t)A

– if p(t) is a probability distribution so is p(t+ 1) given the TPM

– A= TPM

What does this imply?

• Lets say I know p0, what can I do now? I can keep multiplying by the
matrix A over and over again

– Notation = p(0)At+1

• For any generic time t, the probability vector at time t = initial probability
* transition probability matrix raised to t

– p(t) = p(0)At

Next step is to think about what happens when t is really big? Is there some
kind of limit? Does this converge to something?

• p(0) matters a lot at the beginning, but after many cycles it shouldn’t
matter much

• What happens when we take t to infinity?

• This is where the ergodic property comes in, in the form of the Ergodic
theorem
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6.1 Ergodic theorem

For any ergodic Markov chain defined by transition probability matrix A, we
have that p(t) goes to some limit well call p∞ as t goes to ∞ This is built up

through a series of facts

1. P∞A = p∞

• p∞ is an eigenvector of A

2. For any stochastic matrix A, a vector of all 1s as a column vector, 1 =
(1, , 1)T

• We have A1 = 1

3. Any eigenvalue has magnitude ≤ 1 of this stochastic matrix A

• |λ| ≤ 1

4. If we can write A as XDX−1

• Where D is a diagonal matrix of eigenvalues

• Then At = XDtX−1

– Power of a matrix by t; A2 = AA

– Lowercase t isnt transpose!

• If we can describe the limit of Dt as t goes to infity, then we describe
the limit At

– And D is a diagonal matrix so possibly easier to work with

5. Dt goes to a limit D∞

• where D∞ is a matrix with 1 at the top left and 0 everywhere else

• if max of all of the eigenvalues (λi) = 1 and this is unique

– An assumption

• A ∈ Rmxm

– A is an m x m matrix, so is X and D

• This tells us At → A∞

– Where LHS is a matrix with all of its rows defined as p∞

∗ P∞ is a row vector, so this is still a matrix

And we call p∞ the stationary distribution of this Markov chain

• We get here no matter where we start from; if we run the chain long
enough we converge to this distribution
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