
STAT 534
Lecture 3

Data Structure
April 9th,2019

c©2019 Marina Meilă
mmp@stat.washington.edu

Scribes: Dehai Liu

1 Python Object

non-object: simple types, such as integer, character, etc.
object: belongs to class(type), such as list, string and array.

When we use object, we also need to consider:

• How the data is stored

• What operation are performed on the data

• Independence to the programming language being used

2 Theorectical Computer Science

In this part, we will explore ways to organize data that make operations on it
more efficiently.

Example Read n strings of length k and turn it into a long string.

Algorithm 1 Long String

1: Initialize long string ls
2: for each i ∈ [0, n− 1] do
3: Read string s;
4: ls← ls + s
5: end for

• Runtime of concatenating strings: ik/iter

• Runtime of allocation of string s: 1/iter

• Total runtime: O(n2) write + O(n) allocation

1

Algorithm 2 Array

1: Initialize array la with nk elements
2: l← 0
3: for each i ∈ [0, n− 1] do
4: Read string s;
5: la[l : l + k]← s
6: l← l + k
7: end for

• Runtime of assigning s to la: k/iter

• Runtime of allocation of string s: 1 allocation for the array la

• Total runtime: O(n) write + O(1) allocation

Algorithm 3 Python List - Append

1: Initialize python list pl
2: for each i ∈ [0, n− 1] do
3: Read string s;
4: Append s to pl (If out of space,allocate more space to pl)
5: end for

• Runtime of appending s to pl: k/iter

• Runtime of allocating space: log2n

• Total runtime: O(n) write + O(log2n) allocation

Algorithm 4 Python List - Insert

1: Initialize python list pl
2: for each i ∈ [0, n− 1] do
3: Read string s;
4: Insert s at front of pl (If out of space,allocate more space to pl)
5: end for

• Runtime of appending s to pl: k(i + 1)/iter

• Runtime of allocating space: log2n

• Total runtime: O(n2) write + O(log2n) allocation

2

3 (Abstract) Data Structure

Array Static

• Allocate the space at once

• Fixed size of n

(Double) Linked List Dynamic
Supposed we define runtime of ”Easy” Operation to be O(1) and ”Hard”/”Slow”

Operation to be O(n). Then the runtime of the following operations are:

• Output elements in order: O(n)

• Append at the end: O(1)

• Prepend(insert at the beginning): O(1)

• Insert at location vi: O(1)

• Delete at location vi: O(1)

• Access the ith element when not knowing its location: O(n) (traverse the
linked list)

Stack A list or an array
Operations and their corresponding runtime of stack are:

• Push(append at the end): O(1)

• Pop(Output the last element and delete it): O(1)

Application of stack : Function calls
main program

x = · · ·
y = f1(x,3)

Functions

f1(x1,x2):

f2(a,b)

f2(a,b):

f3(· · ·)
Main program, f1, f2 and f3 are pushed into the stack sequentially, then

the return values of each function above pop out in reverse order.

4 List Algorithm

• Bubble sort (O(n2)): Compare the value with its neighbor and switch
them if they are not in order.

• Heap sort (O(nlogn)): Efficient algorithm for sorting problems.

3

