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1 Project

• Write project as if reader has prior knowledge. No need to explain α, β,
etc

• May allow late projects by a few days

• Use any project outline you want

2 Iterative Proportional Fitting (IPF)

• Consider a Markov random field: V = A,B,C,D, E = AB,AD,BC,DC.
We know that the joint probability can be broken down as follows:

Pv(a, b, c, d) =
1

Z
φABφBCφCDφDA

• IPF Algorithm:

Given: Data = x1, x2, ..., XN samples;
Model = (V, ε) with maximal cliques C, ... = C;
Each maximal clique has a relative probability function φc.

Initialization: φc > 0, for c ∈ C. P̂c(Xc) = Nc(Xc)
N for xc ∈ Ωc, c ∈ C.

These are emipirical marginals.

f o r t = 1 , 2 , . . .
f o r c ∈ C

es t imate Pc by M C M C

φnewc = φcurrentc
P̂c

Pc

run u n t i l convergence
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• Example:

Recall our clique marginals are PC(Xc) =
∑
x∈Ω,Xc=X0

c
Pv(X).

Using our PABCD model as an example, if we wanted to calculate the
PAB , the joint probability distribution of A,B we might do:

PAB(1, 1) =
∑
c,d

PABCD(1, 1, c, d)

PAB(1,−1) =
∑
c,d

PABCD(1,−1, c, d)

For our initialization step, we would calculate Nc(Xc) as something like:

NAD(−1,−1) = #{ai = di = −1}

At Maximum likelihood,
PML
AB = P̂AB

φAB(1, 1) = φAB(1, 1)
P̂AB(1, 1)

PAB(1, 1)

• Theorem: At maximum likelihood: Pc = P̂c for all c ∈ C. Note, we only
match on things we parameterize in the model. That is, PML

AC 6= P̂AC
because we that is not something we are estimating in our model.

Now let’s compute the gradient of the joint probability: Start with log
likelihood:

l = lnPv(data)

Then
1

N
l =

n∑
i=1

[
∑
c

∑
Ωc

lnφc(xc)P̂c(xc)]− lnZ

• Lemma 1: Gives formula for partial derivative of the normalizing con-
stant, Z, respect to φc.

dln(Z)

dφc(xc)
=
Pc(Xc)

φc(Xc)

• Lemma 2: The partial derivative of the complete log likelihood is:

d

dφc(xc)
(

1

N
l) =

d

dφc(xc)
[ln(φc(xc)P̂c(Xc)− lnZ] =

P̂c(xc)− Pc(xc)
φc(xc)
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Setting d
dφc(xc) ( 1

N l) = 0 we get P̂c(xc)
φnew
c (xc) = Pc(xc)

φcurrent
c (xc) this is called fixed

point iteration.

Note: φnewc ← φcurrentc
P̂c

Pc

• Lemma 3: P t+1
c = Zt

Zt+1
P̂c.

From Lemma 3 it follows that
∑
xc∈Ω P

t+1
c (xc) = 1 =

∑
Ωc
P̂c(xc) so

this means: Zt = Zt+1

• Important notes:

1. IPF algorithm maximizes likelihood of data w.r.t φc, c ∈ C.
2. We obtain P̂c(xc) from the data. This is part of the initialization

step.

3. In our IPF algorithm, Pc must be estimated by MCMC. It is not
known.

4. This is a concave problem so the maximum we converge on is a global
max!

5. This algorithm converges fast relative to other methods.

3 HMM and Baum-Welch

• Convergence: Use lt+1

lt − 1 ≤ tol
Tol = 10−4 is reasonable

• Consider our data with sequences sampled independently:

seq 1: O1
1, O

1
2, ..., O

1
T1

seq 2: O2
1, O

2
2, ..., O

2
T2

...

Our model is always defined by λ = (A,B, π). As usual, if we wanted
P (O1:T |λ) we find it via forward-backward algorithm.

Also note that

likelihood(data|λ) = Πn
k=1P (Ok1:Tk

|λ)
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`(λ) =
∑
k

(lnP (Ok1:Tk
)|λ)

The complete likelihood is given by

P (O1:T , q1:T |λ) = π(q1)aq1q2aq2q2 ...bq1O1bq2O2 ...

The complete log likelihood is then:

`c(λ̄) = log(π(q1)) +

T−1∑
t=1

log(aqtqt+1
) +

T∑
t=1

ln(bqtOt
)

Define indicator variables Zt(i) = 1qt=i for t = 1 : T, i = 1 : N and rewrite
the previous equation using them:

`c(λ̄) =

N∑
i=1

z1(i)ln(π̄i)+

T−1∑
t=1

N∑
i=1

N∑
j=1

zt(i)zt+1(j)ln(āij)+

T∑
t=1

N∑
i=1

zt(i)ln ¯biOt

Idea of the Baum-Welch algorithm: Use current λ to estimate Eλ(lc) =
Q(λ, λ)

To start, lets find E(Z)s. Eλ(Z1(i)) = γ1(i) because expected value
of indicator is simply the probability of the event. We also have that:
Eλ(Zt(i)Zt+1(j)) = ξij(t)

Now we have all the information to do the expectation step:

Eλ(lc(λ)) =
∑
i

γ1(i)ln(πi) +

T−1∑
t=1

∑
i,j

ξt(i, j)ln(aij) +
∑
t

∑
i

γt(i)ln(biOt)

• The result computed was for one sequence, now to incorporate multiple
sequences k = 1 : n

P (Ok1:tk
, qk1:Tk

, k = 1 : n) = Πn
k=1P (Ok1:tk

, qk1:Tk
)

`cλ̄ =

n∑
k=1

[

N∑
i=1

z1(i)ln(π̄i) +

T−1∑
t=1

N∑
i=1

N∑
j=1

zt(i)zt+1(j)ln(āij) +

T∑
t=1

N∑
i=1

zt(i)ln ¯biOt
]

Q(λ, λ̄) =

n∑
k=1

[
∑
i

γk1 (i)lnπ̄i +
∑
t

∑
ij

ξkt (i, j)lnāij +
∑
t

∑
i

ξkt (i)lnb̄iOk
t
]

So taking the log and Q we just sum over the k values and the maximiza-
tion will follow.
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