Markov Random Field and Baum-Welch Algorithm

June 4, 2019
(C)2019 Marina Meilă
mmp@stat.washington.edu
Scribes: Michael Hellstern, Qinqing Liao, Geoffrey Wang

1 Project

- Write project as if reader has prior knowledge. No need to explain α, β, etc
- May allow late projects by a few days
- Use any project outline you want

2 Iterative Proportional Fitting (IPF)

- Consider a Markov random field: $V=A, B, C, D, E=A B, A D, B C, D C$. We know that the joint probability can be broken down as follows:

$$
P_{v}(a, b, c, d)=\frac{1}{Z} \phi_{A B} \phi_{B C} \phi_{C D} \phi_{D A}
$$

- IPF Algorithm:

Given: Data $=x^{1}, x^{2}, \ldots, X^{N}$ samples;
Model $=(\mathrm{V}, \epsilon)$ with maximal cliques $C, \ldots=\mathcal{C}$;
Each maximal clique has a relative probability function ϕ_{c}.

Initialization: $\phi_{c}>0$, for $c \in \mathcal{C} . \hat{P}_{c}\left(X_{c}\right)=\frac{N_{c}\left(X_{c}\right)}{N}$ for $x_{c} \in \Omega_{c}, c \in \mathcal{C}$. These are emipirical marginals.

```
for t = 1,2,\ldots.
        for }c\in\mathcal{C
            estimate }\mp@subsup{P}{c}{}\mathrm{ by M C M C
            \phi
            run until convergence
```


- Example:

Recall our clique marginals are $P_{C}\left(X_{c}\right)=\sum_{x \in \Omega, X_{c}=X_{c}^{0}} P_{v}(X)$.
Using our $P_{A B C D}$ model as an example, if we wanted to calculate the $P_{A B}$, the joint probability distribution of A, B we might do:

$$
\begin{aligned}
P_{A B}(1,1) & =\sum_{c, d} P_{A B C D}(1,1, c, d) \\
P_{A B}(1,-1) & =\sum_{c, d} P_{A B C D}(1,-1, c, d)
\end{aligned}
$$

For our initialization step, we would calculate $N_{c}\left(X_{c}\right)$ as something like:

$$
N_{A D}(-1,-1)=\#\left\{a^{i}=d^{i}=-1\right\}
$$

At Maximum likelihood,

$$
\begin{gathered}
P_{A B}^{M L}=\hat{P}_{A B} \\
\phi_{A B}(1,1)=\phi_{A B}(1,1) \frac{\hat{P}_{A B}(1,1)}{P_{A B}(1,1)}
\end{gathered}
$$

- Theorem: At maximum likelihood: $P_{c}=\hat{P}_{c}$ for all $c \in \mathcal{C}$. Note, we only match on things we parameterize in the model. That is, $P_{A C}^{M L} \neq \hat{P}_{A C}$ because we that is not something we are estimating in our model.

Now let's compute the gradient of the joint probability: Start with log likelihood:

$$
l=\ln P_{v}(d a t a)
$$

Then

$$
\frac{1}{N} l=\sum_{i=1}^{n}\left[\sum_{c} \sum_{\Omega_{c}} \ln \phi_{c}\left(x_{c}\right) \hat{P}_{c}\left(x_{c}\right)\right]-\ln Z
$$

- Lemma 1: Gives formula for partial derivative of the normalizing constant, Z, respect to ϕ c.

$$
\frac{d \ln (Z)}{d \phi_{c}\left(x_{c}\right)}=\frac{P_{c}\left(X_{c}\right)}{\phi_{c}\left(X_{c}\right)}
$$

- Lemma 2: The partial derivative of the complete log likelihood is:

$$
\frac{d}{d \phi_{c}\left(x_{c}\right)}\left(\frac{1}{N} l\right)=\frac{d}{d \phi_{c}\left(x_{c}\right)}\left[\ln \left(\phi_{c}\left(x_{c}\right) \hat{P}_{c}\left(X_{c}\right)-\ln Z\right]=\frac{\hat{P}_{c}\left(x_{c}\right)-P_{c}\left(x_{c}\right)}{\phi_{c}\left(x_{c}\right)}\right.
$$

Setting $\frac{d}{d \phi_{c}\left(x_{c}\right)}\left(\frac{1}{N} l\right)=0$ we get $\frac{\hat{P}_{c}\left(x_{c}\right)}{\phi_{c}^{\text {new }}\left(x_{c}\right)}=\frac{P_{c}\left(x_{c}\right)}{\phi_{c}^{\text {current }}\left(x_{c}\right)}$ this is called fixed point iteration.

Note: $\phi_{c}^{\text {new }} \leftarrow \phi_{c}^{\text {current }} \frac{\hat{P}_{c}}{P_{c}}$

- Lemma 3: $P_{c}^{t+1}=\frac{Z^{t}}{Z_{t+1}} \hat{P}_{c}$.

From Lemma 3 it follows that $\sum_{x_{c} \in \Omega} P_{c}^{t+1}\left(x_{c}\right)=1=\sum_{\Omega_{c}} \hat{P}_{c}\left(x_{c}\right)$ so this means: $Z^{t}=Z^{t+1}$

- Important notes:

1. IPF algorithm maximizes likelihood of data w.r.t $\phi_{c}, c \in \mathcal{C}$.
2. We obtain $\hat{P}_{c}\left(x_{c}\right)$ from the data. This is part of the initialization step.
3. In our IPF algorithm, P_{c} must be estimated by MCMC. It is not known.
4. This is a concave problem so the maximum we converge on is a global max!
5. This algorithm converges fast relative to other methods.

3 HMM and Baum-Welch

- Convergence: Use $\frac{l^{t+1}}{l^{t}}-1 \leq t o l$ $\mathrm{Tol}=10^{-4}$ is reasonable
- Consider our data with sequences sampled independently:
seq 1: $O_{1}^{1}, O_{2}^{1}, \ldots, O_{T_{1}}^{1}$
seq 2: $O_{1}^{2}, O_{2}^{2}, \ldots, O_{T_{2}}^{2}$

Our model is always defined by $\lambda=(A, B, \pi)$. As usual, if we wanted $P\left(O_{1: T} \mid \lambda\right)$ we find it via forward-backward algorithm.

Also note that

$$
\operatorname{likelihood}(\text { data } \mid \lambda)=\Pi_{k=1}^{n} P\left(O_{1: T_{k}}^{k} \mid \lambda\right)
$$

$$
\ell(\lambda)=\sum_{k}\left(\ln P\left(O_{1: T_{k}}^{k}\right) \mid \lambda\right)
$$

The complete likelihood is given by

$$
P\left(O_{1: T}, q_{1: T} \mid \lambda\right)=\pi\left(q_{1}\right) a_{q_{1} q_{2}} a_{q_{2} q_{2}} \ldots b_{q_{1} O_{1}} b_{q_{2} O_{2}} \ldots
$$

The complete log likelihood is then:

$$
\ell_{c}(\bar{\lambda})=\log \left(\pi\left(q_{1}\right)\right)+\sum_{t=1}^{T-1} \log \left(a_{q_{t} q_{t+1}}\right)+\sum_{t=1}^{T} \ln \left(b_{q_{t} O_{t}}\right)
$$

Define indicator variables $Z_{t}(i)=1_{q_{t}=i}$ for $t=1: T, i=1: N$ and rewrite the previous equation using them:
$\ell_{c}(\bar{\lambda})=\sum_{i=1}^{N} z_{1}(i) \ln \left(\bar{\pi}_{i}\right)+\sum_{t=1}^{T-1} \sum_{i=1}^{N} \sum_{j=1}^{N} z_{t}(i) z_{t+1}(j) \ln \left(\overline{a_{i j}}\right)+\sum_{t=1}^{T} \sum_{i=1}^{N} z_{t}(i) \ln b_{i O_{t}}^{-}$
Idea of the Baum-Welch algorithm: Use current λ to estimate $E_{\lambda}\left(l_{c}\right)=$ $Q(\lambda, \bar{\lambda})$

To start, lets find $E(Z)$ s. $\quad E_{\lambda}\left(Z_{1}(i)\right)=\gamma_{1}(i)$ because expected value of indicator is simply the probability of the event. We also have that: $E_{\lambda}\left(Z_{t}(i) Z_{t+1}(j)\right)=\xi_{i j}(t)$

Now we have all the information to do the expectation step:
$E_{\lambda}\left(l_{c}(\bar{\lambda})\right)=\sum_{i} \gamma_{1}(i) \ln \left(\bar{\pi}_{i}\right)+\sum_{t=1}^{T-1} \sum_{i, j} \xi_{t}(i, j) \ln \left(\bar{a}_{i j}\right)+\sum_{t} \sum_{i} \gamma_{t}(i) \ln \left(\bar{b}_{i O_{t}}\right)$

- The result computed was for one sequence, now to incorporate multiple sequences $k=1: n$

$$
\begin{gathered}
P\left(O_{1: t_{k}}^{k}, q_{1: T_{k}}^{k}, k=1: n\right)=\Pi_{k=1}^{n} P\left(O_{1: t_{k}}^{k}, q_{1: T_{k}}^{k}\right) \\
\ell_{c} \bar{\lambda}=\sum_{k=1}^{n}\left[\sum_{i=1}^{N} z_{1}(i) \ln \left(\bar{\pi}_{i}\right)+\sum_{t=1}^{T-1} \sum_{i=1}^{N} \sum_{j=1}^{N} z_{t}(i) z_{t+1}(j) \ln \left(\overline{a_{i j}}\right)+\sum_{t=1}^{T} \sum_{i=1}^{N} z_{t}(i) \ln b_{i O_{t}}\right] \\
Q(\lambda, \bar{\lambda})=\sum_{k=1}^{n}\left[\sum_{i} \gamma_{1}^{k}(i) \ln \bar{\pi}_{i}+\sum_{t} \sum_{i j} \xi_{t}^{k}(i, j) \ln \overline{a_{i j}}+\sum_{t} \sum_{i} \xi_{t}^{k}(i) \ln \bar{b}_{i O_{t}^{k}}\right]
\end{gathered}
$$

So taking the \log and Q we just sum over the k values and the maximization will follow.

