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1 Project

e Write project as if reader has prior knowledge. No need to explain «, 3,
etc

e May allow late projects by a few days

e Use any project outline you want

2 Iterative Proportional Fitting (IPF)

e Consider a Markov random field: V = A, B,C,D, E = AB, AD,BC,DC.
We know that the joint probability can be broken down as follows:

1
Py(a,b,c,d) = Z¢AB¢BC¢CD¢DA
e IPF Algorithm:

Given: Data = z',22,..., X~ samples;

Model = (V, €) with maximal cliques C, ... = C;
Each maximal clique has a relative probability function ¢..

Initialization: ¢. > 0, for ¢ € C. ]SC(XC) = % for z. € Q.,c € C.
These are emipirical marginals.

for t = 1,2,...
for ceC
estimate P, by MCM C

_ geurrent P,
¢?€U’ ¢gur7 ent L ¢

P

run until convergence



Example:

Recall our clique marginals are Po(X¢) =), cq x,—xo Po(X).

Using our Papcp model as an example, if we wanted to calculate the
Pap, the joint probability distribution of A, B we might do:

PAB(l, 1) = ZPABCD(L 17Ca d)
c,d

Pap(1,-1) = ZPABCD(L —1,¢,d)
c,d

For our initialization step, we would calculate N.(X.) as something like:

Nap(—1,-1) = #{a* =d' = —1}
At Maximum likelihood, A

Py = Pag

Pap(1,1)
1,1) = 1,1)——=
$ap(1,1) = dap(l, )PAB(Ll)
Theorem: At maximum likelihood: P, = P, for all ¢ € C. Note, we only
match on things we parameterize in the model. That is, P%L # Pac
because we that is not something we are estimating in our model.

Now let’s compute the gradient of the joint probability: Start with log
likelihood:
I = InP,(data)

Then

=1 ¢

Qe

Lemma 1: Gives formula for partial derivative of the normalizing con-
stant, Z, respect to ¢c.

din(Z)  P.(X.)
X,

d¢c($c) B d)c( C)

Lemma 2: The partial derivative of the complete log likelihood is:

P.(z.) — Pe(z.)
be(Te)

d 1 d

. T = Ty nGelae) PelXe) = inZ] =
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Setting #@C)(%l) =0 we get d)?ju(fig)c) = ¢gu}:$£ifzzc) this is called fixed

point iteration.

Note: ¢£Lew — qsgurrenti

PC

¢
Lemma 3: Pitl = _Z2_p_.
c Zii1

From Lemma 3 it follows that > o P (z.) = 1 = Yo Pe(z.) so
this means: Zt = Z+!

Important notes:

1. IPF algorithm maximizes likelihood of data w.r.t ¢.,c € C.

2. We obtain P,(z.) from the data. This is part of the initialization
step.

3. In our IPF algorithm, P, must be estimated by MCMC. It is not
known.

4. This is a concave problem so the maximum we converge on is a global
max!

5. This algorithm converges fast relative to other methods.

HMM and Baum-Welch

+1
Convergence: Use ltlt —1<tol

Tol = 10~* is reasonable

Consider our data with sequences sampled independently:
seq 1: Of,03,...,0},

seq 2: 07,03, ...,0%,

Our model is always defined by A = (A, B, ). As usual, if we wanted
P(Oq.7|\) we find it via forward-backward algorithm.

Also note that

likelihood(data|\) = II}_, P(O¥.p, |\)



((A) =Y _(InP(Ofg,)IN)

k

The complete likelihood is given by
P(OliTﬂ qllTl)‘) = ﬂ-(q1>aq1q2aq2q2"'blIlOleZOQ"'

The complete log likelihood is then:

EC(;\) log QI + Z log athQt+1 + Z ln Qfot

Define indicator variables Z;(i) = 14,=; fort =1:T,i =1: N and rewrite
the previous equation using them:

N T-1 N N T N
(N = Z z1(0)In(7;) —i—Z ZZ 2t(8) ze1 (§)In( a4 —|—Z Z 2 (1)Inbo,
i=1 t=1 i=1 j=1 t=1 i=1

Idea of the Baum-Welch algorithm: Use current A to estimate E)y (Io) =
QN A)

To start, lets find E(Z)s. FEx(Z1(i)) = 71(i) because expected value
of indicator is simply the probability of the event. We also have that:

Ex(Zi(i)Z141(j)) = &;5(1)
Now we have all the information to do the expectation step:

Z’yl )in(T; —|—ZZ&@] )in(a;; —|—ZZ% )in(b 1Ot

t=1 14,5

The result computed was for one sequence, now to incorporate multiple
sequences k=1:n

P(Olftk ’ q’ka ) k =1: n) = n*lp(Olf'tk ) quk)

n N T-1 N N T N
25 Z Z z1(8)In(7;) + Z Z Z 2¢(1) ze41(9)In(ai;) + Z Z 2¢(1)Inbo,]
k=1 i=1 t=1 i=1 j=1 t=1 i=1
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Z% lnm—|—ZZ§t i, 7)Ina;; —I—ZZQ lnbzok

k=1 1 t

So taking the log and Q we just sum over the k values and the maximiza-
tion will follow.
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