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1 Gibbs Sampling

The goal of Gibbs sampling is to obtain samples from a complex multivariate
probability distribution of the form

π(x1, x2, . . . , xn) =
ϕ(x1, . . . , xn)

Z
, xi ∈ Ωi,

where ϕ is some non-negative function on Ω =
∏n

i=1 Ωi and Z is the normaliza-
tion constant. The sets Ωi can be discrete or continuous, but we will deal only
with the discrete case for simplicity. The idea behind Gibbs sampling is that
it might be much easier to sample from the univariate conditional distributions
P [Xj |x1, . . . xj−1, xj+1, . . . , xn] than it is to draw i.i.d samples from the multi-
variate distribution π. For instance, we will consider below the example of the
Ising model, where directly computing the normalization constant Z turns out
to be intractable.

The Gibbs sampling algorithm generates a Markov chain Xi = (Xi
1, . . . , X

i
n),

i = 0, 1, 2, . . . , T such that the empirical distribution of the samples {X1, . . . ,XT }
approximates the joint probability distribution π. Henceforth, we let x−i denote
(x1, . . . , xi−1, xi+1, . . . , xn).

Algorithm 1: Gibbs Sampling

1 Initialize X0 = (X0
1 , . . . , X

0
n)

2 for t = 1, 2, . . . , T do
3 Select i randomly from {1, . . . , n} with uniform probability

4 Sample Xt
i ∼ P [Xi|Xt−1

−i ]

5 Set Xt
−i = Xt−1

−i
6 end

Output: X1,X2, . . . ,XT .

Under suitable assumptions on the transition probability matrix (Tx,x′) (to
be discussed later), X0,X1,X2, . . . will be a Markov chain with stationary dis-
tribution π. Note however that X1, . . . ,XT need not be i.i.d.
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2 The Ising model

The Ising model is a graphical probabilistic model with origins in statistical
physics. Let G be a graph with vertex set V = {1, 2, . . . , n} and edge set
E . Each i ∈ V is associated with a random variable Xi that takes values in
{+1,−1}. The Ising model assumes that (X1, . . . , Xn) has a joint probability
distribution of the form

π(x) =
1

Z
exp

−∑
i∈V

hixi −
∑
{i,j}∈E

hijxixj

 , x ∈ Ω = {±1}n,

where hi, hij are parameters and Z is the appropriate normalization constant.
Choosing hij < 0 for all {i, j} ∈ E amounts to assuming that states where a
vertex has the same sign as its neighbors have a higher probability. We some-
times use the notation i ∼ j to indicate that {i, j} ∈ E .

Note that an explicit computation of Z would require Ω(2max(n,|E|)) calcula-
tions and hence is not tractable for large n. However, the conditional probability
distributions have a relatively simple form and are easy to sample from:

P [Xi = 1|X−i = x−i] =
P [Xi = 1,X−i = x−i]

P [X−i = x−i]

=
P [Xi = 1,X−i = x−i]

P [Xi = 1,X−i = x−i] + P [Xi = −1,X−i = x−i]

=
exp

(
−hi −

∑
j∼i hijxj

)
exp

(
−hi −

∑
j∼i hijxj

)
+ exp

(
hi +

∑
j∼i hijxj

)
= σ

−2

(
hi +

∑
j∼i

hijxj

) ,

where σ is the logistic function σ(z) = 1
1+e−z . Therefore, it is natural to use the

Gibbs sampling algorithm to sample from π. We should also that this model
satisfies the so-called local Markov property: for every i ∈ V ,

Xi ⊥ all other Xk | {Xj |j ∼ i}.
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