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1 Rejection Sampling

• Goal: Get independent samples from f(x) on domain Ω

• Given: g(x), f(x)
g(x) ≤M , g >> f <=> f > 0 => g > 0

• Algorithm

Algorithm 1 Rejection sampling algorithm

1: procedure Rejection sampling()
2: sample x ∼ g,

3: sample u ∼ uniform[0,1]

4: until u ≤ f(x)
g(x) ≤ 1

5: return x

Notice that the acceptance probability P [accept] ∝ 1
M :

P [accept] =

∫
Ω

g(x)P [accept|x]dx =

∫
Ω

f(x)

Mg(x)
=

1

M

This property has implication of how to choose proper g(x). A proper
g(x) will yield a smaller M value so that the acceptance probability will
not be too small.

Also, It can be confirmed that the sample generated using the procedure
above is actually from the true f(x) distribution:

f̂(x) =
g(x)a(x)

P [accept]
= g(x)

f(x)

Mg(x)
= f(x)

• Example: Sampling from ”tail” of f(x)
Define I(x∈A) where A = {x||x| > c} for some constant c. Then from the
relationship between f(x) and g(x):

f(x) ∝ g(x)I[x∈A]
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So the target f(x) can be calculated as below:

f(x) =
g(x)Ix∈A
Pg[A]

Then M can be calculated as:

M =
1

Pg[A]

It can be seen that if the tail probability of f(x) is very small, then M is
a very large number which means that the acceptance probability will be
very small. The algorithm will not be efficient.

2 Importance Sampling

• Goal: Ef [h(x)] (x ∈ Ω, h : Ω ∈ R)

• Given: g(x), g > 0 whenever f > 0

• Algorithm

Algorithm 2 Importance sampling algorithm

1: procedure Importance sampling()
2: for t=1:T do
3: sample xt ∼ g
4:

¯̄h = 1
T

∑T
t=1 h(Xt)

f(x)
g(x)

It can be confirmed that Eg[
¯̄h] is actually Ef [h]:

Ef [h̄] =

∫
Ω

h(x)f(x)dx ≈ h̄ =
1

T

T∑
t=1

h(Xt)

Eg[
¯̄h] =

1

T

T∑
t=1

Eg[h(Xt)
f(x)

g(x)
]

= E[h(Xt)
f(x)

g(x)
]

=

∫
Ω

h(x)
f(x)

g(x)
dx

= Ef [h]

Notice that V ar(¯̄h) ∝ 1
T :

V ar(¯̄h) =
1

T 2
× T × V ar(h(x)f(x)

g(x)
) ∝ 1

T

Since we want the variance to be small, then ideally: g(x) ∝ h(x)f(x)
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3 Metropolis-Hastings Sampling

• Goal: Simulate samples from target distribution π

• Given: Proposal distribution g(x
′ |x)

• Algorithm

Algorithm 3 Metropolis-Hastings algorithm

1: procedure Metropolis-Hastings()
Initialize x(0) ∼ q(x)

2: for iteration t=1,2,3... do
3: sample x

′ ∼ q(x′ |xt−1) . proposal distribution

4: a = min(1, π(x
′
)q(xt−1|x

′
)

π(xt−1)q(x′ |xt−1)
) . Acceptance Probability

5: xt =

{
x
′

with probability a
xt−1 with probability 1− a

• Example: Bayesian estimation for Probit Model
Given that x ∈ IRd, y ∈ {0, 1}, and P [y = 1|x] = Φ(βTx) where Φ is the
cdf of standard normal distribution.

The goal is to find the posterior distribution of β

P (β|(xi, yi)i=1:n, π0)

where (xi, yi)i=1:n is the data and π0 is the prior distribution.

Notice that choosing the uniform distribution as the prior distribution is
not a good idea. The better choice is π0 ∼ N(0,Σ) with large Σ

First, we initiate the proposal distribution

q(β
′
|β) = N(β, τ2Σ)

Compute the maximum likelihood estimator β̂ and var(β̂) = Σ.

Algorithm 4 Bayesian Estimation for Probit Model

1: procedure Metropolis-Hastings()

β0 = β̂
2: for iteration t=1,2,3... do
3: sample β′ ∼ N(β, τ2Σ) . proposal distribution

4: a = min(1, π(β
′
)N(βt−1,β

′,τ2Σ)
π(βt−1)N(β′,βt−1,τ2Σ) ) . Acceptance Probability

5: βt =

{
β
′

with probability a
βt−1 with probability 1− a
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