STAT 534

Lecture 9

HMM Part II, ML Estimation, and Viterbi Algorithm

May 7, 2019
(C)2019 Marina Meilă
mmp@stat.washington.edu
Scribes: Michael Pearce, Shelly Luo, Sierra Adibi

1 Hidden Markov Models (HMM) Part II

Assume:

1. $q_{1: T}$ hidden $\in\{1, \ldots, N\}$,
2. $O_{1: T}$ observed $\in\{1, \ldots, M\}$,
3. Model A, B, π known.

Then

$$
\begin{gathered}
\alpha_{t}(i)=P\left[O_{1: t}, q_{t}=i\right] \\
\beta_{t}(i)=P\left[O_{t+1: T} \mid q_{t}=i\right] \\
\gamma_{t}(i)=P\left[q_{t}=i \mid O_{1: T}\right]=\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{i^{\prime}=1}^{N} \alpha_{t}\left(i^{\prime}\right) \beta_{t}\left(i^{\prime}\right)} \\
\xi_{t}(i, j)=P\left[q_{t}=i, q_{t+1}=j \mid O_{1: T}\right] \\
=\frac{\alpha_{t}(i) \times a_{i j} \times \beta_{t+1}(i) \times b_{j, O_{t+1}}}{P\left[O_{1: T}\right]}
\end{gathered}
$$

The three things we want to do are in the following list:

1. $P\left[O_{1: T}\right]$ (in previous lecture notes)
2. ML Estimation of A, B, π, given $O_{1: T}$ (in Section 2 below)
3. Most likely sequence $q_{1: T}$ (started in Section 3 below; to be finished next lecture)

2 Maximum Likelihood (ML) Estimation for Markov Chain

Problem: Given $q_{1: T}$, we wish to estimate A and π.
First, note that

$$
\begin{aligned}
P\left[q_{1: T} \mid \pi, A\right] & =\pi_{q_{1}} \Pi_{t=1}^{T-1} a_{q_{t}, q_{t+1}} \\
& =p i_{0} \Pi_{i, j=1}^{N} a_{i j}^{n_{i j}}
\end{aligned}
$$

where $n_{i j}=$ is the number of transitions from i to j , and $\sum_{i, j=1}^{N} n_{i j}=T-1$.
We can solve this equation by finding

$$
\max _{A} \sum_{i, j=1}^{N} n_{i j} \log \left(a_{i j}\right)+\log \left(\pi_{q_{1}}\right)
$$

such that

$$
\sum_{j=1}^{N} a_{i j}=1 \text { for all } i
$$

The general solution is given by:

$$
\hat{A}_{i j}=\frac{n_{i j}}{\sum_{j^{\prime}} n_{i j^{\prime}}}
$$

Now, we illustrate the above equations with an example: Suppose we have the sequence $\{0,1,1,1,0,0,1,1,0,0,0\}, T=11$.
Then,

$$
\hat{\pi}_{i}= \begin{cases}1, & \text { if } q_{1}=i \\ 0, & \text { otherwise }\end{cases}
$$

Then, we know

$$
P\left[q_{1: T} \mid \pi, A\right]=\pi_{0} a_{01}^{2} a_{11}^{3} a_{00}^{3} a_{10}^{2}
$$

which leads us to the solution

$$
\hat{a}_{00}=3 / 5, \hat{a}_{01}=2 / 5, \hat{a}_{10}=2 / 5, \hat{a}_{11}=3 / 5
$$

Thus the transition matrix is:

$$
\hat{A}=\left[\begin{array}{ll}
\frac{3}{5} & \frac{2}{5} \\
\frac{2}{5} & \frac{3}{5}
\end{array}\right]
$$

Furthermore, note the following formula for the ML estimation of $B \mid q_{1: T}$:

$$
B \mid q_{1: T}=\max _{B} \sum_{i=1}^{N} \sum_{k=1}^{M} n_{i k}^{\prime} \log \left(b_{i k}\right)
$$

such that

$$
\sum_{k=1}^{K} b_{i k}=1 \text { for all } i
$$

which implies that

$$
\hat{B}_{i k}=\frac{n_{i k}^{\prime}}{\sum_{k^{\prime}} n_{i k^{\prime}}^{\prime}}
$$

2.1 ML for HMM

Another problem we may have is: Given $O_{1: T}$ and known N , we wish to estimate A, B, π by ML.

Start by writing

$$
\begin{aligned}
P\left[O_{1: T} \mid A, B, \pi\right] & =\sum_{q_{1}} \sum_{q_{2}} \cdots \sum_{q_{T}} P\left[q_{1: T} \mid A, \pi\right] P\left[O_{1: T} \mid q_{1: T}, B\right] \\
& =\sum_{q_{1}} \sum_{q_{2}} \cdots \sum_{q_{T}} P\left[q_{1: T} \mid A, \pi\right] \Pi_{t=1}^{T} b_{q_{t}, O_{t}} \\
& =\sum_{q_{1}} \sum_{q_{2}} \cdots \sum_{q_{T}} P\left[q_{1: T} \mid A, \pi\right] \Pi_{i=1}^{N} \Pi_{k=1}^{M} b_{i k}^{n_{i k}^{\prime}}
\end{aligned}
$$

So we have formulae for the terms within each sum now. However, calculating the sum is harder. This will be done with the Baum-Welch Algorithm (which is an EM Algorithm).

2.2 Baum-Welch Algorithm

1. Initialize: $\mathrm{A}, \mathrm{B}, \pi$
2. E Step: Estimate $E\left[n_{i j}\right], E\left[n_{i j}^{\prime}\right] \mid O_{1: T}$

Note that

$$
\begin{aligned}
E\left[n_{i k}^{\prime}\right] & =\sum_{t: O_{t}=k} P\left[q_{t}=i \mid A, B, \pi, O_{1: T}\right] \\
& =\sum_{t: O_{t}=k} \gamma_{t}(i) \\
E\left[n_{i j}\right] & =\sum_{t=1}^{T-1} P\left[q_{t}=i, q_{t+1}=j \mid A, B, \pi, O_{1: T}\right] \\
& =\sum_{t=1}^{T-1} \xi_{t}(i, j)
\end{aligned}
$$

3. M Step: $\hat{a}_{i j}=\frac{E\left[n_{i j}\right]}{E\left[\sum_{j^{\prime}} n_{i j^{\prime}}\right.}, \hat{b}_{i k}=\frac{E\left[n_{n k}^{\prime}\right]}{E\left[\sum_{k^{\prime}} n_{i k}^{\prime}\right]}, \hat{\pi}=P\left[q_{1}=i\right]$

Notation: $\Gamma(i)=\sum_{t=1}^{T} \gamma_{t}(i), \sum_{i=1}^{N} \Gamma(i)=T$.

Note that

$$
\begin{aligned}
\hat{a}_{i j} & =\frac{E\left[n_{i j}\right]}{E\left[\sum_{j^{\prime}} n_{i j^{\prime}}\right]} \\
& =\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{t=1}^{T-1} \gamma_{t}(i)} \\
\hat{b}_{i k} & =\frac{E\left[n_{i k}^{\prime}\right]}{E\left[\sum_{k^{\prime}} n_{i k}^{\prime}\right]} \\
& =\frac{\sum_{t: O_{t}=k} \gamma_{t}(i)}{\Gamma(i)} \\
\hat{\pi} & =P\left[q_{1}=i\right] \\
& =\gamma_{1}(i)
\end{aligned}
$$

4. Iterate until convergence.

Theorem: Baum-Welch Algorithm converges to a local maximum of the likelihood.

3 Most likely sequence $q_{1: T}$

In this problem, we are given $\mathrm{A}, \mathrm{B}, p i$, and $O_{1: T}$. We will use the Viterbi Algorithm (Dynamic Programming) to solve.

3.1 Viterbi Algorithm

$$
\operatorname{Pr}\left[q_{1}=i \mid A, B, \pi, O_{1: T}\right]=\gamma_{1}(i)
$$

For a sequence of length 1 , the solution is:

$$
q_{1}^{*}=\operatorname{argmax}_{i} \gamma_{1}(i)
$$

The algorithm (continued next lecture) should help us find:

$$
\begin{aligned}
& \delta_{t}(i)=P\left[q_{1: t-1}^{*}, q_{t}=i \mid A, B, \pi, O_{1: t}\right] \\
& \psi_{t}(i)
\end{aligned}
$$

given

$$
\begin{gathered}
\delta_{t-1}(j), j=1: N \\
\psi_{t-1}(j), j=1: N
\end{gathered}
$$

