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1 Hidden Markov Models (HMM) Part II

Assume:

1. q1:T hidden ∈ {1, . . . , N},

2. O1:T observed ∈ {1, . . . ,M},

3. Model A, B, π known.

Then
αt(i) = P [O1:t, qt = i]

βt(i) = P [Ot+1:T |qt = i]

γt(i) = P [qt = i|O1:T ] =
αt(i)βt(i)∑N

i′=1 αt(i′)βt(i′)

ξt(i, j) = P [qt = i, qt+1 = j|O1:T ]

=
αt(i)× aij × βt+1(i)× bj,Ot+1

P [O1:T ]

The three things we want to do are in the following list:

1. P [O1:T ] (in previous lecture notes)

2. ML Estimation of A, B, π, given O1:T (in Section 2 below)

3. Most likely sequence q1:T (started in Section 3 below; to be finished next
lecture)
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2 Maximum Likelihood (ML) Estimation for Markov
Chain

Problem: Given q1:T , we wish to estimate A and π.

First, note that

P [q1:T |π,A] = πq1ΠT−1
t=1 aqt,qt+1

= pi0ΠN
i,j=1a

nij

ij

where nij = is the number of transitions from i to j, and
∑N

i,j=1 nij = T − 1.
We can solve this equation by finding

max
A

N∑
i,j=1

nij log(aij) + log(πq1)

such that
N∑
j=1

aij = 1 for all i

The general solution is given by:

Âij =
nij∑
j′ nij′

Now, we illustrate the above equations with an example: Suppose we have
the sequence {0, 1, 1, 1, 0, 0, 1, 1, 0, 0, 0}, T = 11.
Then,

π̂i =

{
1, if q1 = i,

0, otherwise.

Then, we know
P [q1:T |π,A] = π0a

2
01a

3
11a

3
00a

2
10

which leads us to the solution

â00 = 3/5, â01 = 2/5, â10 = 2/5, â11 = 3/5

Thus the transition matrix is:

Â =

[
3
5

2
5

2
5

3
5

]

Furthermore, note the following formula for the ML estimation of B|q1:T :

B|q1:T = max
B

N∑
i=1

M∑
k=1

n′ik log(bik)
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such that
K∑

k=1

bik = 1 for all i

which implies that

B̂ik =
n′ik∑
k′ n′ik′

2.1 ML for HMM

Another problem we may have is: Given O1:T and known N, we wish to estimate
A, B, π by ML.

Start by writing

P [O1:T |A,B, π] =
∑
q1

∑
q2

· · ·
∑
qT

P [q1:T |A, π]P [O1:T |q1:T , B]

=
∑
q1

∑
q2

· · ·
∑
qT

P [q1:T |A, π]ΠT
t=1bqt,Ot

=
∑
q1

∑
q2

· · ·
∑
qT

P [q1:T |A, π]ΠN
i=1ΠM

k=1b
n′
ik

ik

So we have formulae for the terms within each sum now. However, calculat-
ing the sum is harder. This will be done with the Baum-Welch Algorithm
(which is an EM Algorithm).

2.2 Baum-Welch Algorithm

1. Initialize: A, B, π

2. E Step: Estimate E[nij ], E[n′ij ] | O1:T

Note that

E[n′ik] =
∑

t:Ot=k

P [qt = i|A,B, π,O1:T ]

=
∑

t:Ot=k

γt(i)

E[nij ] =

T−1∑
t=1

P [qt = i, qt+1 = j|A,B, π,O1:T ]

=

T−1∑
t=1

ξt(i, j)

3. M Step: âij =
E[nij ]

E[
∑

j′ nij′
, b̂ik =

E[n′
ik]

E[
∑

k′ n′
ik]

, π̂ = P [q1 = i]

Notation: Γ(i) =
∑T

t=1 γt(i),
∑N

i=1 Γ(i) = T .
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Note that

âij =
E[nij ]

E[
∑

j′ nij′ ]

=

∑T−1
t=1 ξt(i, j)∑T−1
t=1 γt(i)

b̂ik =
E[n′ik]

E[
∑

k′ n′ik]

=

∑
t:Ot=k γt(i)

Γ(i)

π̂ = P [q1 = i]

= γ1(i)

4. Iterate until convergence.

Theorem: Baum-Welch Algorithm converges to a local maximum of the
likelihood.

3 Most likely sequence q1:T

In this problem, we are given A, B, pi, and O1:T . We will use the Viterbi
Algorithm (Dynamic Programming) to solve.

3.1 Viterbi Algorithm

Pr[q1 = i|A,B, π,O1:T ] = γ1(i)

For a sequence of length 1, the solution is:

q∗1 = argmaxiγ1(i)

The algorithm (continued next lecture) should help us find:

δt(i) = P [q∗1:t−1, qt = i|A,B, π,O1:t]

ψt(i)

given

δt−1(j),j = 1 : N

ψt−1(j),j = 1 : N
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