
STAT 534
Lecture 12

Dynamic Programming: Viterbi and LCS
May 9, 2019

c©2019 Marina Meilă
mmp@stat.washington.edu

Scribes: Kellie MacPhee, Jacqueline Zhou

1 Viterbi Algorithm

Recall the setup of the Viterbi Algorithm.

Given: model A,B, π and observations O1:T

Want: q∗1:T := argmax
q1:T

P [q1:T |O1:T , A,B, π]

Note that q∗1:T is a function of T . We also define p∗ = P [q∗1:T |O1:T , A,B, π].

Compare this to the Forward-Backward Method, in which rather than a
maximum we are computing a summation:

P [O1:T |A,B, π] =
∑
q1:T

P [O1:T , q1:T |A,B, π] (1)

From now on, we will suppress the model parameters A,B, π in the proba-
bilities, but we assume that these are known.

1.1 Optimality Principle

A problem is said to fulfill the optimality principle or maximum principle
if the sub-paths of the optimal path are themselves optimal paths for their sub-
intervals. Consider the following: suppose we are searching for the optimal path
from a source s to a target t, and we happen to know that the optimal path
P = (s, p1, . . . , pN , t) goes through some pi. Then the optimal path from s to
pi must be the sub-path of P given by (s, p1, . . . , pi) and similarly the optimal
path from pi to t must be the sub-path of P given by (pi, . . . , pN , t). (Proof: by
contradiction.)

1



1.2 Algorithm

Define the following quantity, which corresponds to the most likely path from
time 1 to t that ends at i:

δt(i) := P [q∗1:t−1, qt = i, O1:t] (2)

Note that p∗ = maxi=1,...,N δT (i) and we have the following recursion (for t > 1):

δt(i) := max
j
{δt−1(j)aji} biOt (3)

We also define the argmax of the above as the following pointer:

ψt(i) := argmax
j

{δt−1(j)aji} (4)

The algorithm proceeds as follows:

Initialization

When t = 1, we have the base case:

δ1(i) = πibiO1 , 1 ≤ i ≤ N (5)

ψ1(i) = 0 (6)

2



Recursion

The Viterbi Algorithm then consists of a forward iteration in which we compute
each δt(i) and corresponding ψt(i):

δt(i) := max
1≤j≤N

{δt−1(j)aji} biOt , 2 ≤ t ≤ T, 1 ≤ i ≤ N (7)

ψt(i) := argmax
1≤j≤N

{δt−1(j)aji} , 2 ≤ t ≤ T, 1 ≤ i ≤ N (8)

Termination

Once we have computed all of the δT (i) we obtain q∗1:T as follows:

1. q∗T = argmax
1≤i≤N

δT (i)

2. For t = T − 1, . . . , 1, set qt = ψt+1(q∗t+1).

2 Longest Common Subsequence (LCS)

The longest common subsequence problem arises in computational biology, e.g.
genetics. Here we have two sequences X = X1:m and Y = Y1:n and we want
to know: how many letters must I delete from each sequence in order to make
them coincide? The result is the longest common subsequence (LCS) Z = Z1:k,
where k ≤ min{n,m}. As an example, consider X = abcde and Y = atcdql.
Then we would have Z = acd. There are also more complex notions of similarity
between sequences, such as edit distance.

With LCS, the optimality principle is as follows. Define

l(i, j) = length(LCS(X1:i, Y1:j)). (9)

Considering the last letter of each sequence, we have two cases:

1. Xm = Yn. In this case, Zk = Xm = Yn and Z1:k−1 = LCS(X1:m−1, Y1:n−1).
This yields the formula

l(m,n) = l(m− 1, n− 1) + 1 (10)

2. Xm 6= Yn. In this case, we either have Z1:k = LCS(X1:m−1, Y1:n) or
Z1:k = LCS(X1:m, Y1:n−1); whichever of these two options gives a longer
subsequence is our answer. This yields the formula

l(m,n) = max{l(m,n− 1), l(m− 1, n)} (11)

Writing X and Y along the top and left sides of a table, we create a table
where entry (i, j) will correspond to the length of the longest subsequence of Xi

and Yj . Note that when i = 0 or j = 0, i.e. Xi or Yj is an empty string, the

3



longest subsequence has length zero. We first fill in these initializations.

1 2 3 4 5
S T A T S

0 0 0 0 0 0
1 A 0
2 S 0
3 P 0
4 E 0
5 T 0
6 S 0

Now we fill out the rest of the table as follows. For each entry (i, j) in the
table, if Xi = Yj we add 1 to entry (i− 1, j − 1) (the number in the upper left
diagonal space). Such locations are marked in red.

In all other locations, where Xi 6= Yj , we simply take the max of the two
cells immediately above and to the left. This results in the following:

1 2 3 4 5
S T A T S

0 0 0 0 0 0
1 A 0 0 0 1 1 1
2 S 0 1 1 1 1 2
3 P 0 1 1 1 1 2
4 E 0 1 1 1 1 2
5 T 0 1 2 2 2 2
6 S 0 1 2 2 2 3

Finally, we read off the bottom right entry as the length of the LCS. To
obtain the actual LCS, we can also include pointers in each cell to where the
value came from (options are the three cells above, to the left, and above and
to the left).

1 2 3 4 5
S T A T S

0 0 0 0 0 0
1 A 0 ←0 ←0 ↖1 ←1 ←1
2 S 0 ↖1 ←1 ←1 ←1 ↖2
3 P 0 ↑1 ↑1 ←1 ←1 ↑2
4 E 0 ↑1 ↑1 ↑1 ↑1 ↑2
5 T 0 ↑1 ↖2 ←2 ↖2 ←2
6 S 0 ↖1 ↑2 ←2 ←2 ↖3

4


	Viterbi Algorithm
	Optimality Principle
	Algorithm

	Longest Common Subsequence (LCS)

