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Problem 1 – Online linear regression by Stochastic gradient

Consider the linear regression problem with Least Square loss

min
β

E[(y − βTx)2] = min
β

LLS (1)

where y ∈ R, x ∈ R
n, β ∈ R

n. For simplicity we consider the infinite sample
version of the problem, but if you want a variation (ungraded) try also the finite
sample version, where we optimize L̂LS instead.

The function in (1) is a quadratic function that has a closed form solution, but
we will pretend that we don’t know this and investigate the use of (stochastic)
gradient descent for this problem.

a. Find the expression of the gradient and Hessian of this problem, i.e∇LLS(β), ∇
2LLS(β).

Express the Hessian as a function of some well known statistical descriptor(s)
of the data distribution.

b. Assume that the covariates x are sampled from a Normal distribution with
mean 0 and covariance Σ. Describe and motivate a reasonable way to find the λ
parameter of the Stochastic Gradient algorithm based on this assumption.

c. Write the expression of d = ∂LLS(y,β
Tx)

∂β
. Show that the direction of descent

d is collinear with x. What does the scaling of x represent from a statistical
modeling point of view?

e. Write the Stochastic Gradient Descent algorithm to optimize this
problem. Assume that λ is known.

For practice, ungraded Consider now Neural Network regression, with LS
loss, and solve the same problem. Consider also Neural Network with logistic
output and Llogit loss, and solve the same problem. Consider any of these with
a regularization term C

2 ||β||
2.
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Problem 2 – Boosting algorithms on stumps

Read the whole problem carefully before you start working. You need to hand
out the required plots (described at the end) and your comments, including the
answers to the questions scattered through the text.

Code: You are required to write your own code for all questions, with the follow-
ing exception: if you want to replace the stump classifier with another classifier,
whose code you have available, you can discuss this with me BEFOREHAND.
Exception:note that you can modify the code for the linear classifier you wrote
in Homework 1 to do question a.; this is allowed and even recommended ex
officio.

This homework will make use of the following (two-dimensional) data sets:
hw3-linear-train.dat, hw3-circle-train.dat, hw3-linear-test.dat, hw3-circle-test.dat
having each 200 examples. The first two are training sets, which you will use to
construct your classifiers. The last two are test sets, on which you will evaluate
the peformance of the classifiers you obtained.

1 - Fitting a “stump” A stump is a linear classifier that takes a single coordi-
nate into account, i.e. f(x) = ±sign(xi− b). Its decision surface is a hyperplane
perpendicular to one of the coordinate axes. The name stump recalls that this
classifier is a decision tree with just 1 “branch”.

Write code that implements stumps:

Input d-dimensional data x1, . . . xN

It is assumed that {x1
j , . . . x

N} ⊆ [Aj , Bj ] with Rj = Bj − Aj . In other
words, the range of coordinate j has value Rj , given. (For both data sets
in this assignment, all the ranges Rj are 1.)
the index of a coordinate j ∈ {1, 2, . . . d}
weights wi, i = 1, . . .N for the datapoints
(the weights are non-negative and normalized)

1. Choose a coordinate j = 1 : d

2. Sort the data in increasing order by coordinate xi
j ; denote by x

(i)
j the order

statistics; reorder the labels {yi} and the weights {wi} accordingly

3. for i = 0 : N
Calculate ǫi = −

∑

i′≤i y
(i′)w(i′) +

∑

i′>i y
(i′)w(i′). This represents the

fraction of correctly classified points - fraction of errors for the stump

f(x) = xj − ai with ai ∈ (x
(i)
j , x

(i+1)
j ) along direction j.

4. Let E+ = maxi ǫi, l+ = argmax
i

ǫi, E− = maxi(−ǫi), l− = argmax
i

(−ǫi).
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The “max” here must be computed ONLY over the i’s that are “local”
peaks, i.e. for which ǫi−1 < ǫi > ǫi+1 or −ǫi−1 < −ǫi > −ǫi+1. Extra

credit: If xi,j 6= xi′,j for all i, i′ and there is at least one label of each
class, then such a “maximum” exists. True or false?
Note the (1− ǫi)/2 values represents the classification error of a classifier
that labels xi:n with +1, and x1:i−1 with −1. And 1 + ǫi)/2 is the error
rate of a classifier that labels the point to it’s left with +1, and the ones
to its right with −1.

5. Set

f(x) =







(xj −
x
(l+)

j
+x

(l++1)

j

2 )/Rj if E+ > E−

−(xj −
x
(l

−
)

j
+x

(l
−

+1)

j

2 )/Rj if E+ ≤ E−

In other words, the stump classifier is a hyperplane perpendicular on coordinate
axis j passing halfway between two data points. The normalization by Rj

ensures that the values of f are bounded in [−1, 1] for all input data.

Let Bj be the family of stumps for a fixed j and let B̃j = { signf, b ∈ Bj} be
the corresponding family of integer-valued stumps. (In the homework, because
we use DiscreteAdaBoost, we use only integer-valued stumps B̃j.)

Note that for some data sets, the same value of E± can be attained for several
different stumps along the same direction. In that case, choose one of them
arbitrarily.

To test that your stump classifier works well, two one-dimensional data sets
are provided: hw3-1D-clean.dat, hw3-1D-noisy-labels.dat. The first is
separable by a stump; in the second, 10% of the labels have changed sign so the
data cannot be separated with 0 error. These data are only provided to assist
you debug; you are not required to show any plots about them

b. Run the Discrete AdaBoost algorithm on the hw3-linear-train.dat,

hw3-circle-train.dat for M iterations, using the families B̃1, B̃2 as base clas-
sifiers. For simplicity, take j = 1 at iterations k = 1, 3, 5, . . . and j = 2 on the
even iterations. Choose M somewhere between 50 and 200; in fact, you are
encouraged to try various values of M before chosing one to plot.

c. Plots and comments (Suggestion: make the plots as you progress through
the homework, so that you can use them for debugging)

• Plot the two training sets in 2D.

• If you implement stumps in part a. Plot ǫi vs i for k = 1 or 2, for
each of the two data sets (2 plots, one for each data set).
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• For each of the classification problems, let fk =
∑k

m=1 βmfm (the current

boosted classifier). Let Ek = 1
N

∑N

i=1 1fk(xi) 6=yi the training error of fk.
Define Etest

k similarly, as the average number of errors of fk on the test
set. Plot the Ek and Etest

k vs k on the same plot. Do you see any evidence
of overfitting?

• Plot the decision regions or decision boundary on the two data sets (over-
imposed on the training data if possible)

d. What would happen if RealAdaBoost with stumps (as described in the
lecture notes) was run on the hw3-circle-train.dat? More precisely, would
the training error of Ek decrease to 0? Explain why or why not.[ OK to find
the answer by experiment, i.e. by actually running RealAdaBoost on the the
circle data, but not required.]

e. For extra credit: Prove or disprove that the stumps are “weak learners”,
i.e that for every n there is a δ < 1/2 so that for every data set of size n the
classificaition error of the best stump is ≤ δ.
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