
STAT 538 Homework 4

Out February 8, 2012

Due February 16, 2012
c©Marina Meilă

mmp@stat.washington.edu

Reading B&V chapters 2.1–2.3, 2.5., 3.1–3.3 For the problems in this homework
that deal with convexity, try to find the most elegant solution. Elegant can
mean that you give a short proof, based on an example in the textbook, or a
property proven in the text, instead of a long proof starting from the definitions.

Problem 1 – Some sets of probability distributions. B&V problem

2.15

Only a, c, e, f, h . Give short proofs or explanations.

Problem 2 – Some functions on the probability simplex. B&V prob-

lem 3.24

Only a, b, e, f.

Problem 3 – Log-concavity

Do one of BV 3.52, 3.53

Problem 4 – Multilayer Neural Network with Backpropagation

This problem is self-contained. You do not need knowledge of Neural Networks

to solve it.

Let g(x) = 1
1+e−z be the sigmoid function, also called the activation function of

the neural network. Any function that is monotonically increasing and bounded
can be used as activation function, but the sigmoid has additional nice compu-
tational and statistical properties.

Bring all your results to the simplest and most interpretable expression.

a. Show that g′(z) = g(z)(1 − g(z))

b. We build a two-layer neural network with

1



Inputs xk k = 1 : n

Bottom layer zj = g(wT
j x) j = 1 : m, wj ∈ R

n

Top layer f = g(βT z) β ∈ R
m

Output f ∈ [0, 1]

In other words, the neural network implements the function

f(x) = g





m
∑

j=1

βjzj



 = g





m
∑

j=1

βjg(
∑

j

wkjxk)



 (1)

The loss function we will use is the logit loss or log-likelihood loss which repre-
sents the log-likelihood of the class y under the logistic regression model (1). In
other words, assume f(x) represents

f(x) = P̂ [Y = +1|x] (2)

Assume we have a single observation (x, y). Find the expression of the log-
likelihood of this observation as a function of the parameters β, w. Denote this
expression by Llogit(f).

You can use the notation y∗ = 1+y
2 which maps y ∈ {±1} to y∗ ∈ {1, 0}.

c. Find the partial derivatives
∂Llogit

∂f
and

∂Llogit

∂zj
.

d. Find the partial derivative
∂Llogit

∂βj
. Your result should be a function of

y∗, f, z.

e. Now find the partial derivative
∂Llogit

∂wkj
as a function of y∗, x, z,

∂Llogit

∂z
, f .

Note that in these successive steps we have derived formulas for the gradient of

Llogit w.r.t the parameters β, w1:m. It is a good exercise to actually collect these

formulas and write the gradient as a large vector. Another illuminating exercise

is to draw a schematic of the calculation of the gradient; the schematic will have

a structure similar to the original neural net.

f. The result in e. shows that the gradient w.r.t to the w parameters in the
second layer can be computed as a function of gradients w.r.t variables in the
first layer. Generalize this finding to a multilayer network.

Assume that the network has layers 1, 2, . . .M like this

x ≡ x(M) −→ g(x(M), w(M)) −→ . . . x(k+1) −→ g(x(k+1), w(k+1)) −→ x(k) −→ . . . −→ x(1) −→ g(x(1), w(1)) −→ x(0) ≡ f(x).

2



In the above x(k) ∈ R
nk , that is layer k has nk “units” and w(k+1) ∈ R

nk+1×nk ,

in other words, column j of w(k+1) multiplies x(k+1) to produce x
(k)
j . Note the

slight abuse of notation for g. Let n0 = 1, meaning that the output of the
multilayer neural network is a scalar.

We interpret the output f(x) as in equation (2) and we use the logit loss function
as in question b.

Derive a recursive formula for the gradient

∂Llogit

∂w(k+1)
(3)

as a function of variables available at layer k + 1 or k.

Hint: It is good to think this computation in the following way. When data

point x is presented at the input, the values x(k) are computed recursively from

x(k+1) in a “forward propagation” from input to output. The intermediate values

are saved. Once f(x) is obtained, we can compare with the true y and obtain

the cost Llogit(y, f(x)). Next we need to update the parameters w, and for

this we will compute the gradient. Now the gradient calculation will proceed

from the output layer “backwards” towards the input layer M . At each layer

the gradient is computed from the values stored during the forward pass and the

values calculated at the previous layer. This is the “Backpropagation” algorithm.

Extra credit: Train a two layer neural network to solve the “circle” problem
of homework 3. Initialize the w, β parameters with random values. Explain
why this is a good idea. Explain how you chose m, the number of units in the
bottom layer.

3


