STAT 538 Homework 6
 (c)Marina Meilă
 mmp@stat.washington.edu

Problem 1 - 1-norm minimization

Consider the linear regression

$$
\begin{equation*}
y=X \beta+\epsilon \tag{1}
\end{equation*}
$$

where $y \in \mathbb{R}^{n}, \beta \in \mathbb{R}^{p}, X \in \mathbb{R}^{n \times p}$, and $p>n$ (i.e. the problem has more unknowns $\beta_{1: p}$ than observations $y_{1: n}$. Assume X is a full rank matrix. The theory of Compressed sensing (see dsp.rice.edu/cs or future lectures) has shown that β can be estimated on the condition that it is sparse, i.e. that most of its entries are 0 . However, here we will not be concerned with the theory, but only with the methods to solve for β.
a. A QP formulation for CS This optimization problem is one of the algorithms used to solve for β above.

$$
\begin{equation*}
(\mathcal{P}) \min _{\beta}\|\beta\|_{1} \quad \text { s.t. }\|X \beta-y\|^{2} \leq \delta \tag{2}
\end{equation*}
$$

Apply the transformation $z=\left[\beta_{+} \beta_{-}\right]^{T}$ and show that (\mathcal{P}) can be transformed into a convex optimization problem in standard form with linear objective and quadratic constraints, denoted by (\mathcal{Q}). How many unknowns and how many constraints has (\mathcal{Q}) ?
b. Obtain the Lagrangean of (\mathcal{Q}). Denote the dual variable(s) by λ.
c. In the following steps you will find the dual function and dual problem of (\mathcal{Q}). First, take the gradient of L w.r.t the variable z and equate to 0 .
[d. Optional - requires some linear algebra experience] Solve for $z(\lambda)$. Be careful as the linear system you are solving does not have unique solution. Obtain the dual $g(\lambda)$ by replacing $z(\lambda)$ in the expression of L. Bring the expression to a simple form that does not depend on which $z(\lambda)$ you use.
[e Optional.] Obtain now the dual of (\mathcal{Q}), denoted by $(\mathcal{D Q})$. Show that it is concave. How many unknowns and how many constraints has $(\mathcal{D} \mathcal{Q})$?
f. An LP formulation for CS Consider now the optimization problem

$$
\begin{equation*}
\left(\mathcal{P}^{\prime}\right) \min _{\beta}\|\beta\|_{1} \text { s.t. }\|X \beta-y\|_{\infty} \leq \delta \tag{3}
\end{equation*}
$$

Apply the transformation $z=\left[\beta_{+} \beta_{-}\right]^{T}$ and show that this can be transformed into a linear program (LP), denoted by (\mathcal{L}). Do not bring to standard form,
i.e. do not introduce slack variables. How many unknowns and how many constraints has (\mathcal{L}) ?
g. Now bring (\mathcal{L}) to standard form $(\mathcal{L S})$. How many unknowns and how many constraints has $(\mathcal{L S})$?
h. Back to (\mathcal{L}). Obtain the Lagrangean, and take the gradient w.r.t z.
i. Now you will obtain the dual function g : The domain of g is the set of values of the dual variables for which $\operatorname{in} f_{z} L(z$, dual variables $)>-\infty$. Find this domain. Find the expression of g on this domain.
j. Finally, write the dual of (\mathcal{L}), denoted $(\mathcal{D} \mathcal{L})$. Make sure to include all the constraints. Reparametrize the dual so as to reduce the number of unknowns as much as possible. Bring it to a LP in standard form.

Problem 2 - Robust Least Square. B\&V 4.5

Show only one equivalence of the three possible.

Problem 3 - The Markov chain as maximum entropy model

Requires working familiarity with the Markov Chain, Markov Random Fields
Let $X_{1}, X_{2}, \ldots X_{n} \in\{0,1\}$ be a collection of binary random variables. We want to define a joint distribution P over $X_{1: n}$ which has prescribed marginals, and maximum entropy.
2.1 Denote $x=\left(x_{1: n}\right) \in\{0,1\}^{n}$ a configuration of X, by $p_{x}=P\left(X_{1: n}=x\right)$ the value of the joint distribution at x, and by p the vector $p=\left(p_{x}\right)_{x \in\{0,1\}^{n}}$ The above problem can be formulated as

$$
\begin{array}{cl}
\max _{p} & H(p) \\
\text { s.t. } & E\left[X_{i} X_{i+1}\right]=r_{i}, i=1: n-1 \\
& E\left[X_{1}\right]=r_{0} \\
& E[1]=1 \tag{7}
\end{array}
$$

Write the problem explicitly as a function of p and show that this problem is/can be formulated as a convex program.
2.2 Denote by $\theta_{i}, \theta_{0}, \theta^{\prime}$ the Lagrange multipliers associated respectively with (5), (6), (7). Write the Lagrangean function $L\left(p, \theta_{i}, \theta_{0}, \theta^{\prime}\right)$ for this optimization problem, then calculate the value $p(\theta)$ that achieves $\inf _{p} L(p, \theta)$, for $\theta=$ $\left(\theta_{i}, \theta_{0}, \theta^{\prime}\right)$.

Feel free to leave any normalization constant unevaluated (e.g replace it with $Z(\theta))$.
2.3 Examine the form of the maximum entropy solution $p(\theta)$ obtained in 2.2 . Show that it represents a Markov chain.
2.4 What would happen to the solution if the constraint (6) was missing? Same question if some of the (5) were missing.
2.5 [Optional] For the graph G below, construct a Maximum Entropy problem whose solution is a MRF over $A, \ldots F$ that factors according to G. Assume all variables are binary.

