.....

STAT 538 Final Exam Friday March 5, 2010, 3:30-5:20

Student name:

- notes and books are allowed
- electronic devices are not allowed
- Do Well!

1

Problem 1 – Maxima of convex functions

Let f be a strictly convex function, $C \subseteq \text{relint dom } f$ be a closed convex set, and let $x^* \in C$ be a point such that $f(x^*) \geq f(x)$ for all $x \in C$.

2 points

1.1 Show that x^* is an extreme point of C.

1 point

1.2 Is x^* unique? Prove or give a counterexample.

1 point

1.3 Is x^* isolated? Prove or give a counterexample. $[x^*$ Isolated \Leftrightarrow there is a neighborhood of x^* that contains no other maximum of f.]

$\label{eq:problem 2-The rate of convergence of gradient \ descent \ with \ line \ minimization$

Let $x \in \mathbb{R}^2$ and $f = \frac{1}{2}x^T Q x$ with Q symmetric, $Q \succ 0$. f is optimized by gradient descent $x^{k+1} = x^k - \alpha g^k$, with $g^k = \nabla f(x^k)$

2.1 Denote $x^k = x$, $g^k = g$. What is the optimal step size α ?

2 points

2 points

2.2 What is $f(x - \alpha g)/f(x)$ as a function of g, Q.

2 points

2.3 Let

$$Q = \left[\begin{array}{cc} 2 & a \\ a & 2 \end{array} \right]$$

where $a = 2 - \epsilon$ for $\epsilon \ll 1$ a small number. Use Kantorovich's inequality

$$\frac{(y^T y)^2}{(y^T Q y)(y^T Q^{-1} y)} \geq \frac{4mM}{(M+m)^2} \text{ for } y \in \mathbb{R}^n, \ Q \succ 0, \ M = \max \lambda(Q), m = \min \lambda(Q)$$

to determine the rate of convergence of gradient descent with exact line minimization for this problem, as a function of ϵ . (max, min $\lambda(Q)$ denote respectively the largest and smallest eigenvalues of the symmetric matrix Q).

Problem 3 – SVM with logarithmic penalty

Consider the following variant of the SVM classifier:

$$(\mathcal{P}) \min_{\substack{w,b,\gamma_{1:m} \\ \text{s.t.}}} \frac{\frac{1}{2} ||w||^2 + \sum_{i=1}^m \ln \frac{1+e_i^{\gamma}}{2}}{\text{s.t.}} y_i(w^T x_i + b) \ge 1 - \gamma_i, \text{ for all } i \qquad (1)$$
$$\gamma_i \ge 0 \text{ for all } i \qquad (2)$$

where $\{(x_i, y_i), i = 1 : m\}$ is a data set, $x_i \in \mathbb{R}^n, y_i \in \{-1, 1\}$.

3.1 Explain in 1 sentence what is the role of the γ_i variables. What is the optimal value of the γ_i variables if the data can be correctly classified by a hyperplane.

2 points

1 point

3.2 Denote the dual variables associated with (1) by λ_i , and the dual variables associated with (2) by α_i , i = 1 : m. Write the expression of the Laplacian for the optimization problem (\mathcal{P}).

Write the partial derivatives of L w.r.t the primal variables.

2 points

1 point

3.3 Derive the dual objective $g(\lambda, \alpha)$.

3.4 Write (\mathcal{D}) the dual optimization problem of (\mathcal{P}) . Verify that it is a concave maximization problem.

1 point

3.5 Is (\mathcal{D}) a quadratic problem?

1 point

3.6 Write the expressions of w^*, b^* and of the SV classifier as functions of (λ^*, α^*) the solution of (\mathcal{D}) .

2 points

3.7 Let (x_i, y_i) be a data point for which (w^*, b^*) has margin < 1. Which of $\gamma_i, \lambda_i, \alpha_i$ will be > 0, = 0, < 0?

2 points

3.8 Let (x_i, y_i) be a data point for which (w^*, b^*) has margin > 1. What can you say about λ_i , γ_i , α_i in this case?

2 points

3.9 Let (x_i, y_i) be a data point for which (w^*, b^*) has margin = 1. What can you say about λ_i , γ_i , α_i in this case? Find λ_i as a function of the other λ 's.

 $The \ end!$