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STAT 538 Final Exam
Wednesday March 16, 2011, 4:30-6:20

Student name: ..........................................................

• notes and books are allowed

• electronic devices are not allowed

• Do Well!
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Problem – Convex sets

1.1 If A,B are sets, denote by A + B = {a + b | a ∈ A, b ∈ B}. Show that2 points
A +B is convex whenever A and B are convex.

If S is a set and a > 0, denote by Sa = {x | infs−∈S||x− s|| ≤ a}. Show that
Sa is convex if S is convex.

Can you find a counterexample, i.e a set S which is not convex, and an s, so
that Sa is convex?

If S is a set and a > 0, denote by S−a = {x | x′ ∈ S if ||x−x′|| ≤ a}. In other
words, x ∈ S−a if x is contained in S together with the radius a ball around
it.

Show that Sa is convex if S is convex.

Let p be a probability distribution, and a > 0. Is the set H(p) ≥ a convex?

Let p, q be a probability distributions over the same domain Ω, and a > 0.

Let φ(x) be a strictly convex function with domain in r
n and let dφ(y, x) be

the Bregman divergence defined by φ, i.e

dφ(y, x) = φ(y)− φ(x)−∇f(x)T (y − x)

Show that the Bregman ball B(y, a) = {dφ(y, x) ≥ a} is a convex set.

Problem – Linearly Separable Support Vector Machine

Prove that for the linear SVM in the linearly separable case, the solution
satisfies

||w||2 =
∑

i

αi

(Hint: a simple solution exists.)

Problem – Linear SVM

Consider the following optimization problem, that corresponds to the linear
SVM for data set {(xi, yi), i = 1 : m}, x1:m ∈ r

n. It is assumed that the
data are linearly separable, so that the problem is feasible.

(P) minw,b

1

2
||w||1 (1)

s.t. yi(w
Txi + b) ≥ 1 (2)
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This problem can be transformed into the differentiable problem

(P ′) mint,w,b 1T t

s.t. yi(w
Txi + b) ≥ 1 λi, i = 1 : m

w ≺ t α+

1:n

−w ≺ t α−

1:n

t ≻ 0 µ1:n

(3)

In the above, on the right, were introduced the Lagrange multipliers cor-
responding to each of the constraints. Note that (P ′) is a linear program.
Denote the solution of these dual problems by w∗, b∗, t∗, λ∗, (α±)∗, µ∗.

.1 Show that t∗j = |w∗
j | for j = 1 : n, i.e. the variable t represents the

magnitude of w.

.1 Write the expression of the Lagrangean of (P ′).

.2 Write the expression of the partial derivatives of the Lagrangean w.r.t the
primal variables. Find the dual function g(λ, α+, α−, µ).

.3 Write now the dual problem (D′) corresponding to (P ′). Show that this
problem can be expressed only in terms of λ, α± (i.e that µ can be eliminated).
Is (D′) a linear program?

.5 Assume that for some j ∈ 1 : n the solution µ∗
j > 0. What can you say

about w∗
j in this case?

.4 Assume that for some j ∈ 1 : n the solution w∗
j 6= 0. Show that for this

j, one has either α+

j = 0, α−

j = 1 or α+

j = 1, α−

j = 0. What does α+

j − α−

j

represent in this case?

FYI: The Linear SVM, by penalizing the 1-norm of w, encourages the appear-
ance of zeros among the elements of w. This is a different kind of sparsity
than that encountered for the “quadratic” (standard) SVM, where the spar-
sity consisted on having λi’s equal to 0. Note that it is in general difficult to
ensure both.

Another remark is that, while LP’s are somewhat easier to solve, the Linear
formulation is not kernelizable, and we don’t have the “representer theorem”
w =

∑
λiyix

i that we had for quadratic SVM’s.

Problem – General barrier function

Let h : (−∞, 0) → r be a twice differentiable, closed, increasing convex
function, with limu→0 h(u) = ∞. Now consider the convex optimization
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problem

min
x

f0(x) (4)

s.t. fi(x) ≤ 0, i = 1 : m (5)

where f0, f1:m are twice differentiable. We define the h-barrier for this prob-
lem as φh(x) =

∑m

i=1
h(fi(x)) with domain {x | fi(x) < 0}.

Explain why tf0(x) + φh(x) is convex in x for every t > 0.

Let x∗(t) = minx tf0(x) + φh(x) (the h-central path). We assume that the
minimizer exists and is unique for every t > 0. Show how to construct a dual
feasible λ from x∗(t) and find the associated duality gap.

For what functions h does the duality gap found in depend only of t and m

(and no other problem data)?

Problem – Boosting as Minimum Relative Entropy

In this problem we will recover the DiscreteAdaBoost algorithm param-
eters as the solution of a Minimum Relative Entropy problem.

Denote the data set by {(xi, yi), i = 1 : n}, x1:m ∈ r
n, yi = ±1, and the

weights at step k by wk
i , , i = 1 : n. The classifier at step k is fk(x) taking

values ±1. For simplicity, we denote

zi = fk(xi)yi = ±1

We need to determine how to update the weights. Let x ≡ wk+1 be the
unknown weights. We will show that the new weights can be obtain as the
solution to the MRE problem below.

min
x

KL(x||wk) (6)

s.t.
∑

i zixi = 0 (7)

The above problem says the new weights should be “orthogonal” to the previ-
ous classifier (zTx = 0) w.r.t classification, but should be as close as possible
to the previous weight distribution wk. We do not enforce xi > 0 because the
domain of the KL divergence enforces it, and do not enforce normalization
either (hence the solution may be an unnormalized distribution).

.1 Is this a convex optimization problem? 1. Let c be the Lagrange multiplier
of the linear constraint. Write the expression of the Lagrangean of this
optimization problem.
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2. Take the partial derivative of L w.r.t each primal variable xi and by
equating them to 0 find the general form of the solution xi as a function of
c, zi.

.3 Replace the solution found in . in (7) and solve for c. You should recover
the ck of the DiscreteAdaBoost algorithm.

The end!
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