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This course has a major theme: supervised learning (that will also be
called prediction) and a minor theme, optimization. For a brief overview
of statistical learning that defines its various subfields and paradigms see Lec-
ture 0 of STAT 535 at www.stat.washington.edu/courses/stat535/fall11/handouts.html.
In brief, unsupervised learning, the focus of STAT535, is concerned with
estimating [features of] P (X) from a sample, while supervisesd learning is
concerned with P (Y |X), i.e predicting a variable given others.

1 Prediction problems by the type of output

In supervised learning, the problem is predicting the value of an output
(or response – typically in regression, or label – typically in classification)
variable Y from the values of some observed variables called inputs (or
predictors, features, attributes) (X1, X2, . . .Xn) = X. Typically we
will consider that the input X ∈ R

n.

Prediction problems are classified by the type of response Y ∈ Y :

• regression: Y ∈ R

• binary classification: Y ∈ {−1, +1}

• multiway classification: Y ∈ {y1, . . . ym} a finite set

• ranking: Y ∈ Sp the set of permutations of p objects

• structured prediction Y ∈ ΩV the state space of a graphical model over
a set of [discrete] variables V
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Example 1 Regression. Y is the proportion of high-school students who
go to college from a given school in given year. X are school attributes like
class size, amount of funding, curriculum (note that they aren’t all naturally
real valued), median income per family, and other inputs like the state of the
economy, etc. Note also that Y ∈ [0, 1] here.

Economic forecasts are another example of regression. Note that in this prob-
lem as well as in the previous, the Y in the previous period, if observed, could
be used as a predictor variable for the next Y . This is typical of structured
prediction problems.

Weather prediction is typically a regression problem, as winds, rainfall, tem-
peratures are continuous-valued variables.

Predicting the box office totals of a movie. What should the inputs be?

Example 2 (Anomaly) detection. is a binary classification problem.
Y ∈ {normal, abnormal}. For instance, Y could be “HIV positive” vs “HIV
negative” (which could be abbreviated as “+”, “-”) and the inputs X are
concentration of various reagents and lymph cells in the blood.

Anomaly detection is a problem also in artificial systems, as any device may
be functioning normally or not. There are also more general detection prob-
lems, where the object detected is of scientific interest rather than an “alarm”:
detecting Gamma-ray bursts in astronomy, detecting meteorites in Antarctica
(a robot collects rocks lying on the ice and determines if the rock is terrestrial
or meteorite). More recently, detecting faces/cars/people in images or video
streams has become automated.

Example 3 Multiway classification. Handwritten digit classification: Y ∈
{0, 1, . . . 9} and X=black/white 64× 64 image of the digit.

OCR (Optical character recognition). The task is to recognized printed char-
acters automatically. X is again a B/W digital image, Y ∈ {a−z, A−Z, 0−
9, ”.”, ”, ”, . . .}, or another character set (e.g. Chinese).

Example 4 Structured prediction. Speech recognition. X is a segment
of digitally recorded speech, Y is the word corresponding to it. Note that
it is not trivial to segment speech, i.e to separate the speech segment that
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corresponds to a given word. These segments have different lengths too (and
the length varies even when the same word is spoken).

The classification problem is to associate to each segment X of speech the
c9orresponding word. But one notices that the words are not indepedent
of other neighboring words. In fact, people speak in sentences, so it is
natural to recognize each word in dependence from the others. Thus, one
imposes a graphical model structure on the words corresponding to an ut-
terance X1, X2, . . .Xm. For instance, the labels Y 1:m could form a chain
Y 1 − Y 2 − . . . Y m. Other more complex graphical models structures can be
used too.

2 Predictors

A predictor is a [deterministic] function that associates to an input x a
corresponding ŷ = f(x). A predictor is a kind of model (not yet a statistical
model, though), hence when we talk about the set of possible predictors for
a problem we call it the model class F .

We choose the “best” predictor in F for a particular task based on a smaple
or (training set) of labeled data D = {(x1, y1), (x2, y2), (xN , yN)}. The
pairs (xi, yi) in the sample are called examples. In a binary classification
problem we talk about negative, respectively positive examples referring
to examples labeled +, respectively −. N is the sample size.

One can classify prediction methods by the type of predictor (i.e. by the
type of model class F).

Example 5 The linear predictor

f(x) = βT x (1)

where Y ∈ R, X ∈ R
n and β ∈ R

n is a vector of parameters. The model
class is F = {β ∈ R

n} the set of all linear functions over R
n.

The linear predictor can be used for [binary] classification as well

f(x) = sgnβT x (2)
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The above classifier is closely related to logistic [linear] regression, where
we model

P (Y = 1|X)

P (Y = −1|X)
= βT X (3)

Example 6 The Nearest-Neigbor predictor This is a non-parametric
predictor well suited for multiway classification. The label of a point x is as-
signed as follows: (1) we find the example xi that is nearest to x (in Euclidean
distance), (2) we assign x the label yi.

There are many possible extensions to the nearest neighbor classifier; for
instance, one could find the K nearest neighbors of x, and set f(x) to be the
label that appears most frequently among the K neighbors. Ties are possible;
hence, for binary classification, it is practical to make K an odd number.

Example 7 Classification and regression trees. A classification
tree or (decision tree) is built recursively by splitting the data with hyper-
planes parallel to the coordinate axes. At each split, the goal is to separate
+ examples from − examples as well as possible. Eventually, all the regions
will be “pure”, i.e. will contain examples from one class only. Classification
trees can be used in multiway classification as well (there we try to create a
pure region on at least one side of the split) and even with regression (there
we try to obtain regions where the outputs are nearly the same).

Decision regions For a classifier, the function f(x) takes only a finite set of
values. The region in X space where f takes value y is called the decision
region associated to y. Dy = {x ∈ R

n, f(x) = y} = f−1(y). The boundaries
separating the decision regions are called decision boundaries. For a binary
classifier, we have two decision regions, one associated to the value +1, the
other associated to −1. It is assumed by convention that, in this case, f(x) =
0 on the decision boundary.

Sometime, classifiers are named after their decision boundaries: e.g. linear
classifier, quadratic classifier.

Exercises Show that (i) the linear classifier in (2) has a linear decision
boundary; (ii) decision boundary or the nearest neighbor classifier is a polyg-
onal line; (iii) the generative classifier defined in (7) below has a quadratic
decision boundary.
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Figure 1: Examples of classifiers and their decision regions
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2.1 Generative models for classification

One way to define a classifier is to assume that each class is generated by
a distribution gy(X) = P (X|Y = y). If we know the distributions gy and
the class probabilities P (Y = y), we can derive the posterior probability
distribution of Y for a given x. This is

P (Y = y|X) =
P (Y = y)gy(X)

∑

y′ P (Y = y′)gy′(X)
=

P (Y = y)gy(X)

P (X)
(4)

The “best guess” for Y (X) is

f(X) = argmaxyP (Y = y|x) = argmaxyP (Y = y)gy(x) (5)

The classification method above amounts to a likelihood ratio test for Y . The
functions gy(x) are known as generative models for the classes y. There-
fore, the resulting classifier is called a generative classifier. In contrast, a
classifier defined directly in terms of f(x), like the linear, quadratic, decision
tree is called a discriminative classifier. In practice, we may not know the
functions gy(x), in which case we estimate them from the sample D.

Example 8 Assume Y = ±1, gy(x) = N(x,±µ, σ2I), i.e each class is gen-
erated by a Normal distribution with the same spherical covariance matrix,
but with a different mean. Let P (Y = 1) = p ∈ (0, 1). Then, the posterior
probability of Y is

P (Y = 1|x) ∝ pe−||x−µ||2/(2σ2) P (Y = −1|x) ∝ (1 − p)e−||x+µ||2/(2σ2) (6)

and f(x) = 1 iff lnP (Y = 1|x)/P (Y = −1|x) ≥ 0, i.e iff

ln
p

1 − p
−

1

2σ2
[||x2||−2µTx+||µ||2−||x2||−(2µ)T x−||µ||2] =

−2µT

σ2
x+ln

p

1 − p
≥ 0

(7)
Hence, the classifier f(x) turns out to be a linear classifier. The decision
boundary is perpendicular to the segment connecting the centers µ,−µ. This
classifier is known as Fisher’s Linear Discriminant. [Exercises Show
that if the generative models are normal with different variances, then we
obtain a quadratic classifier. What happens if the models gy have the same
variance, but it is a full covariance matrix Σ?]
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3 Loss functions

The loss function represents the cost of error in a prediction problem. We
dentote it by L, where L(y, f(x)) is the cost of predicting f(x) when the
actual outcome is y1.

The Least squares (or quadratic) loss function is given by

L(y, f(x)) = (y − f(x))2 (8)

This loss is commonly associated with regression problems. For classification,
a natural loss function is misclassification error (also called 0-1 loss)

L(y, f(x)) = 1y 6=f(x) =

{

1 if y 6= f(x)
0 if y = f(x)

(9)

Sometimes different errors have different costs. For instance, classifying a
HIV+ patient as negative (a false negative error) incurs a much higher cost
than classifying a normal patient as HIV+ (false positive error). This is
expressed by asymmetric misclaassification costs. For instance, assume
that a false positive has cost one and a false negative has cost 100. We can
express this in the matrix

f(x) : + −
true :+ 0 100

− 1 0

In general, when there are p classes, the matrix L = [Lkl] defines the loss,
with Lkl being the cost of misclassifying as l an example whose true class is
k.

The objective of prediction is to minimize the expected cost on future data,
minf∈F EP (X,Y )[L(Y, f(X)]; we denote the expected cost by L(f). In partic-
ular, for the misclassification error, L01(f) is the probability of making an
error on future data. [Prove this.] The following is a simple rewrite of this
fact

L01(f) = P [Y f(X) < 0] = EPXY
[1[Y f(X)<0]] (10)

This objective cannot be optimized directly, because we don’t know the data
distribution PXY . Therefore, in training classifiers, one uses the empirical
data distribution given by the sample D.

1Note that sometimes it is posible that the loss depends on x directly. Then we would
write it as L(y, ŷ, x) where ŷ = f(x).
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The empirical loss or empirical error or training error is the average
loss on D, i.e

L̂(f) =
1

N

N
∑

i=1

1[yif(xi)<0] (11)

How small can the expected loss be? It is clear that minf∈F L(f) ≥
minf L(f) = L∗. The cost L∗ is the absolute minimum loss for the given
PXY and it is called the Bayes loss. This loss is usually not zero.

Exercise What is the Bayes loss if (1) P (Y |X) ∼ N((β∗)T X, σ2I) and
the loss is LLS; (2) P (X|Y = ±1) ∼ N(µ±, σ2I) and the loss is L01 (for
simplicity, assume X ∈ R, µpm = ±1, σ = 1); (3) give a formula for the
Bayes loss if we know P (X|Y = ±1), P (Y ), Y ∈ {±1} and the loss is L01.
(4) Give an example of a situation when the Bayes loss is 0.

Example 9 Assume we know the data distribution, i.e. we know that P (X|Y =
±1) ∼ N(µ±, σ2I) and P (Y = 1) = p. We will calculate the Bayes loss ex-
plicitly. From Example 8 we know the expression for P (Y |X). The loss
is L01, so the probability of error if we choose Y = 1 for a given x is
equal to P (Y = −1|x) and this equals the expected L01 loss. Hence, the
best y for a given x is the one that minimizes P (−Y |x). The Bayes loss
is equal to L∗

01 =
∫

Rn miny=±1 P (y|x)P (x)dx =
∫

Rn miny=±1 gy(x)P (y)dx =
p
∫

D−

g+(x)dx + (1 − p)
∫

D+
g+(x)dx.

Some issues we will study. Now we have most of the elements in place
to formulate some questions about our task.

• We could try to find f̂ = argmax
f∈F

L̂(f)? This is called the empirical

minimizer. A first problem is how to find f̂ . For some problems,
in particular for linear regression with least-squares loss, there is an
analytical formula for f̂ .

β̂ = (XTX)−1XTY (12)

with X,Y representing respectively the matrix with the inputs xi as
rows, and the vector of corresponding outputs (responses).

On the other hand, the linear classification problem, even for the “sim-
ple” misclassification cost, has no analytic minimizer. One resorts to
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numerical, often iterative algorithms, for minimizing the misclassifica-
tion cost, or other costs associated with classification. This why people
call estimating a predictor “training”.

Thus, one challenge we will take up in this course is to find minima of
functions by numerical methods; this is the realm of optimization.

• A second question is whether minimizing the empirical loss is a “good”
strategy for our stated objective (to have a low expected loss). This is a
statistical question, and we will study it. The result is that sometimes it
is better not to minimize the empirical loss perfectly. This is called the
“bias-variance tradeoff” (explained in the next section). In particular,
sometimes one minimizes

L̂(f) + λJ(f), λ ≥ 0 (13)

where the first term depends on the data, and the second term depends
on properties of f alone. This term is called a regularizer. One can al-
ways cast the above optimization into a statistical estimation problem.
The term that depends on the data is called (formally) the (negative)
log-likelihood, while the term λJ(f) is the (negative) (log)-prior. In
this paradigm, the minimization in (13) represent a MAP (Maximum
A-Posteriori Estimation). The “prior” J(f) is typically favoring “sim-
ple” functions (more about this later). Forms of regularization have
been in use in statistics for a long time, under the name shrinkage.

3.1 A comparison of generative and discriminative clas-
sifiers

Below is a list of the relative advantages of generative and discriminative
classifiers.

Advantages of generative classifiers

• Generative classifiers are statistically motivated

• Generative classifiers are asymptotically optimal

Theorem 1 If the model class Gy in which we are estimating gy con-
tains the true distributions P (X|Y = y) for every y, and gy = P (X|Y ), P (Y =
y) are estimated by Maximum Likelihood then the expected loss of the
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generative classifier fg given by (5) tends to the Bayes loss when N →
∞, i.e limN→∞ L01(fg) ≤ min

f∈F
L01(f). Here F is the class of likelihood

ratio classifiers obtainable from gy’s in G†.

• The log-likelihood ratio ln P (Y =1|x)
P (Y =−1|x)

is a natural confidence measure

for the label at fg(x). In other words, the further away from 0 the
likelihood ratio, the more confident we should be that the chosen y is
correct.

• Generative classifiers extend naturally to more than two classes. If the
problem changes, and a new class appears, or the class distribution
P (Y ) changes, updating the classifier is simple and computationally
efficient. By contrast, representing/visualizing decision boundaries be-
tween more than two classes is tedious.

• Often it is easier to pick a (parametric) model class for gy than directly
for f . Generative models are generally more intuitive than discrimina-
tive models.

Advantages of discriminative classifiers

• Generative models offer no guarantees if the true gy aren’t in the chosen
model class, whereas for many classes of discriminative models there
are guarantees.

• Many discriminative models have performance guarantees for any sam-
ple size N , while generative models are only guaranteed for large enough
N

• Discriminative classifiers offer many more choices (but one must know
how to pick the right model)

• The most important advantage: Generative models do not use data
optimally in the non-asymptotic regime (when N ≪ ∞ ). This has
been confirmed practically many times, as discriminative classifiers
have been very successful for limited sample sizes

Confidence and margin. Sometimes we construct real-valued “classifiers”

f : X −→ R

Then, the label of a new example is ŷ = sgnf(x) and |f(x)| is the confi-
dence of the classification. The margin is yf(x) which should be > 0 for
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correct classification.

3.2 Variance and Bias

For a fixed learning algorithm, if a new data set is sampled ⇒ the learned f
will be different. The variance measures the sensitivity of f to changes in
the training set.

D1 D2 difference between D1, D2
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• variance decreases with N

• variance increases with complexity (high for overfitted models)

When the classifiers in F are too simple, they cannot fit the data well. This
is called bias. Bias can be

• deterministic (hard): no f ∈ F near optimal generalization error
(in the case the classes are separable, no f ∈ F fits the data)

• stochastic (soft): the prior of an f ∈ F with near optimal general-
ization error (i.e that fits the data if classes separable) is very small
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