
STAT 538 Lecture 2

January 5, 2012

Optimization for Statistical Learning
c©Marina Meilă
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1 Why optimization?

Machine learning is both a part of statistics and a part of computer science,
and of its subfield artificial intelligence. The name machine learning was
coined by computer scientists, and emphasizes the view that learning, an
attribute of human intelligence, can be emulated by a machine. This was
a very bold and exciting idea a few decades ago! With time, it became in-
creasingly clear that one cannot do good machine learning while ignoring
statistics. In the same time, groups of statisticians realized the challenge of
large, multidimensional data, produced by the pervasive use of computers.
They also realized they have a lot to contribute to the field of machine learn-
ing. The name statistical learning reflects this new state of understanding,
that statistics is indispensable to automated “learning”. As a paranthesis,
even before the appreciation for statistics was wide-spread, it was realized
that optimization is important for learning. Thus, the two areas that we will
study are not randomly paired, but organically related.

In fact, some people like to define statistical learning as “computationally
minded statistics”. Computation - as the theory and methods for efficiently
computing - is a fundamental part of statistical learning. Much of this com-
putation is related to optimization.

Optimization studies finding minima or maxima of functions. We encounter
this task in most cases when a problem has been ”solved on paper” or just
formulated, but we need to follow with computing the value of its solution.
Most practically interesting problems and many theoretical ones do not have
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analytical solutions. Therefore, optimization in the technical sense deals with
the algorithms for numerically finding extrema of functions and with finding
conditions when these extrema exist.

We will look at applications in statistics (e.g estimating parameters by max-
imizing likelihood) and in related machine learning methods (support vector
machines, boosting). Convexity is intimately related to a class of statistical
models called exponential family models and to the information theoretic
concepts of entropy and Kullback-Liebler divergence, so we will study
the latter too, mainly from an algorithmic perspective.

2 Optimization problems in statistics and

machine learning

Here are some situations that call for optimization:

• Estimating parameters in the Maximum Likelihood framework. Given:
(1) parametric model Pθ(x) with θ ∈ Θ ⊆ R

d a parameter vector; (2)
data DN = {x1, . . . xN} ⊆ X sampled iid. Wanted parameter values

θML = argmax
θ∈Θ

Pθ(DN) (1)

• Estimating the most probable outcome for given model Pθ

x∗ = argmax
x

Pθ(x) (2)

• other parameter estimation paradigms: Least squares estimation,
MAP estimation, Minimax estimation

• Non-parametric estimationby: e.g shape constrained estimation,
the Maximum Entropy framework (more about this later),

• [Model selection]
• Clustering

– “K-means” or least squares clustering
Given data DN = {x1, . . . xN} find assignments a(i) ∈ {1, . . .K}
such that

minimize :
K∑

k=1

∑

a(i)=k

||xi − µk||
2 (3)

for µk =
∑

a(i)=k
xi

∑
a(i)=k

1
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– Minimum diameter clustering
Given data DN = {x1, . . . xN} find assignments a(i) ∈ {1, . . .K}
such that

minimize : max
a(i)=a(j)

||xi − xj || (4)

– Minimum Normalized Cut (“spectral clustering”)
Given data Sij = Sji ≥ 0, for i, j = 1, . . . n find assignment a(i) ∈
{1, . . .K} such that

minimize

K∑

k=1

∑

a(i)=k

∑

j:a(j)6=k Sij
∑N

j=1 Sij

(5)

2.1 Prediction problems

• Linear regression with Least Squares cost

minimize
N∑

i=1

||yi − βTxi||2 (6)

As we already know (Lecture 1), this problem has a closed form solution
given

β̂ = (XTX)−1XTY (7)

with X,Y representing respectively the matrix with the inputs xi as
rows, and the vector of corresponding outputs.

• Ridge regression

minimize
N∑

i=1

||yi − βTxi||2 + λ||β||2 (8)

This is a regularized regression, where a large β parameters are penal-
ized. The problem also has a closed form solution

β̂ = (XTX+ λI)−1XTY. (9)

• Lasso

minimize
N∑

i=1

||yi − βTxi||2 + λ||β||1 (10)

Here, the penalty on β is proportional to ||β||1 =
∑N

j=1 |βj|, the 1-norm
of β. We shall see later that this is a sparsity inducing penalty. The
Lasso estimator does not have a closed form expression.
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• Classification Given data DN = {(x1, y1), . . . (xN , yN)} sampled iid,
find classifier function fθ(x) such that (for instance)

minimize
N∑

i=1

L(yi − fθ(x
i))

︸ ︷︷ ︸

error term

+ λJ(fθ)
︸ ︷︷ ︸

regularization term

(11)

For L01 the misclassification error cost, as well as for the weighted
misclassificatioh cost this problem does not have a closed form solution.
In addition, especially when λ = 0, there may be multiple solutions.

3 ML estimation problems

3.1 Multinomial model

X = {1, 2, . . .K}, θ = {P (1)P (2) . . . P (K)} ≡ {θ1 . . . θK}.

Pθ(DN) =

K∏

k=1

θnk

k (12)

with nk = #(xi = k) in DN . Max likelihood parameter estimate θML is
obtained from

argmax
θ∈Θ

∑

k

Nk ln θk (13)

Constraints:
∑

k θk = 1; θk ≥ 0, k = 1 : K

This is an exponential family model:

lnPθ(x) =
∑

k

δx,k ln θk − A(θ) (14)

3.2 Normal distribution

X = R
p, θ = {µ ∈ R

p,Σ ∈ R
p×p symmetric,≥ 0}

lnPθ(DN) = −
N

2
ln |Σ| −

Np

2
ln(2π)−

1

2

N∑

i=1

(xi − µ)TΣ−1(xi − µ) (15)
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For p = 1, θ = [µ σ2] and the log-likelihood is

lnPθ(DN) = −
N

2
ln σ2 −

N

2
ln(2π)−

1

2σ2

N∑

i=1

(xi − µ)2 (16)

Constraints: σ2 > 0

This is an exponential family model:

lnPθ(x) = (−
1

2σ2
)x2 +

µ

σ2
x−A(µ, σ2) (17)

3.3 Logistic density

X = R, θ = [a b]T , a > 0

lnPθ(DN) =

N∑

i=1

log
ae−axi−b

(1 + e−axi−b)2
(18)

The name comes from the logistic CDF given by

F (x; a, b) =
1

1 + e−ax−b
(19)

[Exercise: Logistic regression is closely related to logistic density estimation.
Formulate the logistic regression problem as an optimization problem.]

3.4 (Finite) Mixture of Gaussians

X = R
p, θ = {π1, . . . πK ∈ R, µ1, . . . µK ∈ R

p, Σ1, . . .ΣK ∈ R
p×p symmetric,≥

0}

lnPθ(DN) =

N∑

i=1

ln

[
K∑

k=1

πk
1

|Σk|1/2(2π)p/2
e−

1
2
(xi−µk)

TΣ−1
k

(xi−µk)

]

(20)

Note that for each of the above problems, one can either: (1) estimate the
parameters by optimizing over θ with the D fixed, or (2) estimate the most
likely x (the mode of the distribution) by optimizing over x with fixed θ.
The latter is less often done in statistics, being replaced by expectation.

[To think of: integration vs maximization in statistics]
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3.5 Non-parametric shape constrained estimation: Con-
vex regression

This area of statistics deals with estimating the best function that fits the
data in a certain class. For example, in convex Least Squares regression
we want to find the convex curve that best fits a given data set. Let the data
be DN = {(x1, y1), . . . (xN , yN)} with xi, yi ∈ R. We want to find the convex

function f(x) that minimizes

N∑

i=1

(yi − f(xi))2

This model/problem is non-parametric because rather than searching for the
solution in a finite-dimensional parameter space, we search in an infinite
dimensional function space (the space of all convex functions). However, one
can show (by convex analysis techniques that we will learn later) that the
solution will always be a piecewise linear function with break points in a
subset of {x1, . . . , xn}. This solution can be obtained by solving for the ai
coefficients:

min
a
−1:n+1

N∑

i=1

[

yi −

N+1∑

j=−1

ajgj(x
i)

]2

(21)

s.t. aj ≥ 0 for all j (22)

where gj(x) are predetermined piecewise linear functions.

The figure below depicts the result of convex regression on a toy data set,
highlighting the differences between the convex regressor and the parametric
regressors.
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4 Optimization in this course

In this course, we will focus on the following kinds of optimization problems.

• Continuous optimization
• Multivariate optimization. As a consequence, we care about the com-
plexity w.r.t the number of parameters to optimize over, in addi-
tion to the complexity w.r.t, for instance, the number of data points
(sample size). The number of parameters will be denoted by n from
now on.

• We assume that in general an analytical solution is not known, or
doesn’t exist. Thus, we will discuss numerical techniques for op-
timization.
Sometimes the optimum of a problem is not attained for any finite
value; but a finite supremum may exist. In other cases, there is an infi-
nite continuous set of possible points where the optimum is attained. If
such a case appears in an estimation problem, we say that the respec-
tive model is not identifyable. One needs to recognize such problems
before trying to solve them, and recast them in a way that removes
such indeterminacies.

• Constrained vs unconstrained optimization. We will start with
unconstrained problems then will continue with constrained (convex)
ones. Most problems in statistics are constrained.

• Global vs local optima. Finding a global optimum is easy when the
problem is convex. Otherwise it is typically hard (NP-hard search
problem). We will focus less on search (discrete problem) and more on
finding local optima (continuous problem).

• We will distinguish between “easy and nice” cases of numerical opti-
mization which are the convex optimization problems, vs the others.
We will give special attention to the former – how the recognize them,
properties of these problems, algorithms.

• We will also learn to recognize situations when an analytical solution
exists to a statistical problem – typically these will be within the ex-
ponential family class of models. This family has deep connections
to convexity, so it will be natural to include its study in the course.
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Problem Continuous Constrained Analytic Unique opt
Lin., ridge regr. yes no yes yes

Lasso yes no no yes
(Lin.) Classif, L01 yes no no no

Multinomial yes
∑

k θk = 1, θk ≥ 0 yes yes
Normal yes Σ ≥ 0 yes yes
Logistic yes a > 0 no yes
Mixture yes Σk ≥ 0 no no

Convex regr. yes aj ≥ 0 no yes
Clustering no – no no

Classification yes usually sometimes
in general no yes

5 The big picture

The three columns below list respectively topics in Statistical Learning,
ideas and concepts that are useful in Learning, and topics in Optimization.
Statistical

Learning Concepts Optimization

Classification
Regression
Ranking
Parameter estimation
(Clustering 535)
(Density estimation)

Parametric/Non-parametric
model
Exponential Family models
Entropy and information
Regularization methods (e.g.
Support Vector Machines
(SVM), Compressed Sensing)

line minimization
unconstrained optimization
Convex Analysis

convex constrained optimization
(non-convex optimization)

I regard as central to this course the concepts in the middle column. Many
advances in modern machine learning have come from developing the ideas
above, with the novel development then applying to several of the problem
classes in the left column. For example, SVM started as a classification
method, but now it applies to clustering, regression, and many other prob-
lems in supervised learning. More recently, Compressed Sensing started as
a regression problem, but it now applies to parameter estimation, forms of
“density estimation” and so on.

With respect to the topics in the optimization column, the course will pro-
ceed sequentially. The concepts in the central column will be introduced
when the necessary level of background knowledge is attained. These con-
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cepts will be exemplified with topics from the left column, most often with
classification or regression. Binary classification being the basic example of
a discrete decision problem. For example, after the necessary background
in convex analysis, we can study exponential family models, which are inti-
mately related to convexity. Then, we will be ready to tackle information
theoretical concepts like entropy and divergence, and their connection to
the estimation of exponential family models. These will be then applied to
classification, regression and parameter estimation problems.

What I hope you will learn, from the optimization point of view

• How to formulate your problem as an optimization problem. Sometimes
the same problem can be set up in several different forms, which all
have the same solution but which may differ very much in terms of
their difficulty! Sometimes by changing the problem a little one can
reduce the difficulty of finding the solution by a lot.

• How to recognize what makes an optimization problem hard. How to
choose the best optimization algorithm for your problem.

• How to solve an optimization problem. How and when to write your
own code and how and when to choose available optimization code.

• The important and growing role of optimization in Machine Learning
and Statistics. Results and algorithms in machine learning and data
analysis that are based on optimization (e.g boosting, support vector
machines). What is different about optimization for data analysis w.r.t
generic optimization.
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