
STAT 538 Lecture 3

January 21, 2011

Unconstrained optimization – Part II
c©Marina Meilă

mmp@stat.washington.edu

Reading: For mathematical background, Appendix A of Boyd & Vanden-
berghe (BV). For Unconstrained optimization proper, BV Ch 9. The notes
follow mostly Bertsekas (B) Chapter 1. For the line minimization methods,
look at B (ch 1), at “Numerical recipes” (NR) chapter 10. NW (Ch 3, 6) is
also useful reading for both line minimization and Quasi-Newton.

1 Multidimensional minimization. The choice

of direction (Continued)

1.1 The Conjugate gradient method

Conjugate Gradient Algorithm

xk+1 = xk + αkdk where αk is chosen by line minimization
1. d0 = −∇f(x0)
2. for k = 1, . . . n− 1, dk = −∇f(xk) + βkdk−1 with

βk =
∇f(xk)T (∇f(xk)−∇f(xk−1))

∇f(xk−1)T∇f(xk−1)
(1)

3. restart from step 1 if k = n

Intuition If H = ∇2f(x∗) = I and f quadratic, then the level curves of f
around x∗ would be circles. After line minimization along any direction of
descent, the next direction of descent will be ⊥ on the previous one, and in
n steps the min is attained.

1

Let
z = H1/2(x− x∗) (2)

where the notation A1/2 represents the matrix square root of the symmet-
ric positive definite matrix A, i.e the matrix B such that BTB = A. B is real
whenever the eigenvalues of A are non-negative; B is not necessarily sym-
metric, and it is not unique as multiplying B to the right with an orthogonal
matrix produces another square root of A.

The usual Taylor approximation of f around the minimimum gives

f ≈ f(x∗) + (x− x∗)TH(x− x∗) + . . . (3)

= f(x∗) + zT z + . . . (4)

= f(x∗) + ||z||2 + . . . (5)

(6)

In the new variable z, the level curves are (approximately) circles. Let d̃1:k
be orthogonal consecutive directions of descent in the z space. We have then

zk − zk−1 = βkd̃k (7)

H−1/2(zk − zk−1) = βkH
−1/2d̃k (8)

xk − xk−1 = βk H
−1/2d̃k

︸ ︷︷ ︸

dk

(9)

The directions dk in the above satisfy dkHdj = 0 for all k 6= j (this is the
definition of conjugate directions). Equivalently, H1/2dk ⊥ H1/2dj, which
means that these directions become orthogonal if we applied the coordinate
transformation H−1/2. But this transformation is exactly the transformation
we need to turn the level curves of f into circles. Hence, we can view the
directions dk as the correct orthogonal direction of descent in a transformed
coordinate system. Note that exact line minimization is essential for the
conjugate gradient method. It is also essential to restart the method after
n steps. In practice one can also restart after less than n steps, especially if
loss of conjugacy is suspected (because of e.g inexact line minimization).

The smart thing about the method is that these directions are computed
recursively, without explicilty estimating, storing or inverting the H matrix,
a big saving in high dimensions.

2

Rates of convergence Practical experience and exact results for quadratic
functions suggest that the conjugate gradients method is superlinear. The
superlinear convergence is preserved even if the method is restarted after less
than n steps. [B]

1.2 Quasi-Newton (variable metric) methods

The idea is to approximate the (inverse) Hessian from the differences

sk = xk+1 − xk (10)

yk = ∇f(xk+1)−∇f(xk) (11)

Below is the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method, which is
considered the best general purpose quasi-Newton method.

BFGS Direction Update

1. Start with any D0 ≻ 0
2. For k = 1, 2, . . . update

Set ρk = (sk)Tyk (12)

Dk+1 = (I − ρksk(yk)T)Dk−1(I − ρkyk(sk)T) + ρksk(sk)T (13)

Below is the update equation for the Broyden family of methods, which
depends on a parameter ξ. The parameter ξk ∈ [0, 1] typically, but values
outside this interval have been studied too; for ξk = 1 one obtains the BFGS.

Dk+1 = Dk +
sk(sk)T

(sk)Tyk
− Dkyk(yk)TDk

(yk)TDkyk
+ ξkτkvkvkT (14)

vk =
sk

(sk)Tyk
− Dkyk

τk
(15)

τk = (yk)TDkyk (16)

Proposition 1 If f is quadratic and we run the quasi-Newton method with
line minimization (or Wolfe conditions) for n steps, then
(1) the vectors d0, d1, . . . dn−1 are A-conjugate
(2) Dn = A−1

3

Advantages and disadvantages The main disadvantage of the quasi-
Newton methods compared to the conjugate directions methods is their large
computational complexity (n2 versus n). The advantage is that the method
is robust to inexact line minimization, and that it does not need restarts. In
addition, near the optimum, the directions quasi-Newton generates are con-
jugate and so it is equivalent to conjugate gradients and Newton-Raphson
and thus converges very fast.

Intuition about BFGS
First Idea If the function is nearly quadratic and the step sizes are small (i.e.
if we are near an optimum), then the equation below holds approximatively

yk = ∇2f(xk+1)sk (17)

The above is called the secant equation, and sometimes quasi-Newton meth-
ods are called matrix secant methods. From (17) it follows that, given n
linearly independent pairs (sk, yk) one can approximate the (inverse) Hes-
sian by

∇2f(xn)−1 ≈ [s0 s1 . . . sn−1][y0 y1 . . . yn−1]−1 (18)

Quasi-Newton methods use this idea to recursively construct an approxima-
tion to ∇2f−1.

The second idea is to use the previous approximation Dk−1 to construct
Dk recursively. Dk−1 already satisfies the secant equation (17) for k ←
k−n+1, . . . k−1 therefore we need to only impose the last linear constraint.
In addition, we shall ask thatDk is “close” toDk−1 in the weighted Frobenius
norm

||A||2W = ||W−1/2AW−1/2||2F =
∑

i,j

(W−1/2AW−1/2)2ij (19)

The matrix W is chosen so as to make the norm invariant to coordinate
changes. In BFGS W is chosen to be the average Hessian

∫ 1

0
∇2f(xk +

tsk)dt = H̄ (note that this is only for theoretical purposes – one does not
actually compute it!) and sets

Dk = argminD ||D −Dk−1||2H̄ s.t. D symmetric and Dkyk = sk (20)

The unique solution to this problem is the BFGS Dk given in equation (13).

Third idea One can make BFGS even more efficient if one settles for an
approximation. The resulting algorithm is called L-BFGS (Limited Memory

4

BFGS) and achieves two things: first, it approximates Dk by a rank m
matrix, with m < n. Such a matrix can be expressed as

Dk = Mk(Mk)T , Mk ∈ R
n×m

using only m × n space and computation instead of n2. Second, L-BFGS
updates the direction dk = Dk∇f(xk) directly. See Resources page article by
Galen Andrew or NW for more details.

1.3 Convergence and rates for gradient based methods

We say that a direction (sequence) is gradient related, if for any sequence
(xk)k such that xk −→ x with x non-stationary, the corresponding sequence
of directions (dk)k is bounded and satisfies

limsup
k−→∞

∇f(xk)Tdk < 0 (21)

This condition ensures that the search directions do not become, in the limit,
orthogonal to the gradient, nor 0, unless we approach a stationary point.

Proposition 2 A direction dk = −Dk∇f(xk) is gradient related if for every
eigenvalue λ of Dk we have

0 < m ≤ λ ≤ M

for some constants m,M .

The first question is: do the methods described here converge to stationary
points (or minima) of f? We shall see that the answer is yes, given that the
direction choice is gradient related (always so for steepest descent) modulo
some stronger or weaker assumptions. The “safest” methods (assuming the
least) require line minimization, while having a constant step size requires
the strongest assumptions.

Proposition 3 Convergence of line search Let xk+1 = xk + αkdk be a
sequence generated by a gradient method with {dk} gradient related and αk

generated by the line minimization rule, truncated line minimization or the
Armijo rule. Then every limit point of {xk} is a stationary point.

5

Proposition 4 Convergence of constant step methods Let xk+1 = xk+
αkdk be a sequence generated by a gradient method with {dk} gradient related.
Assume that for some constant L > 0 we have

||∇f(x)−∇f(y)|| ≤ L||x−y|| for all x, y ∈ R
n (i.e. ∇f is Lipschitz) (22)

and that for all k we have dk 6= 0 and for some fixed ǫ > 0

ǫ ≤ αk ≤ (2− ǫ)ᾱk where ᾱk =
|∇f(xk)Tdk|

L||dk||2 . (23)

Then every limit point of {xk} is a stationary point.

Proposition 5 Convergence for diminishing step size Let xk+1 = xk+
αkdk be a sequence generated by a gradient method with {dk} gradient related
and αk → 0,

∑

k α
k =∞. Assume that for some constant L > 0 we have

||∇f(x)−∇f(y)|| ≤ L||x−y|| for all x, y ∈ R
n (i.e. ∇f is Lipschitz) (24)

and that there exist c1, c2 > 0 so that for all k we have

c1||dk||2 ≤ ||∇f(xk)||2 ≤ c2(−∇f(xk))Tdk (25)

Then either f(xk)→ −∞ or f(xk) converges to a finite value and ∇f(xk)→
0. (Consequently, every limit point of {xk} is a stationary point for f).

These results guarantee that the values xk for the above methods converge
to a unique stationary point under fairly mild conditions, given below.

Proposition 6 Capture theorem Let f be continuously differentiable, let
{xk} be a sequence generated by a gradient method so that all its limit points
are stationary points of f . Assume there exist s, c > 0 so that

αk ≤ s, ||dk|| ≤ c||∇f(xk)||, f(xk+1) ≤ f(xk) (26)

Then, for any isolated stationary point x∗ which is a local minimum, there is
an open set S so that, if xk̄ ∈ S for some k̄, then xk ∈ S for all k > k̄ and
xk → x∗.

6

Now we shall see some results about convergence rates. Here, the conclusions
are that steepest descent is linear (at best), while Newton-Raphson and the
methods that attempt to approximate the Hessian are typically superlinear.

Proposition 7 [B] Assume that αk is chosen by the line minimization rule

and that xk → x∗ with ∇f(x∗) = 0, ∇2f(x∗) ≻ 0. Let Qk =
√
Dk∇2f(xk)

√
Dk

and let mk,Mk be the smallest, respectively largest eigenvalue or Qk (assum-
ing that Dk,∇2f(xk) ≻ 0). Then,

αk
opt =

2

Mk +mk
(27)

and

lim sup
k→∞

f(xk+1)− f(x∗)

f(xk)− f(x∗)
≤ lim sup

k→∞

(
Mk −mk

Mk +mk

)2

(28)

One can show that the above bound is tight for steepest descent.

Proposition 8 (B) The Newton-Raphson algorithm converges superlinearly
Assume xk → x∗, ∇f(x∗) = 0, ∇2f(x∗) ≻ 0 and

lim
k→∞

||dk +∇2f(xk)−1∇f(xk)||
||∇f(xk)|| = 0 (29)

and αk is chosen by the Armijo rule, with s = 1, σ < 1/2. Then,

lim
k→∞

||xk+1 − x∗||
||xk − x∗|| = 0 (30)

2 Noisy gradient and no gradient methods

These are the “cheap and slow” methods which can however be useful too.
One should not confuse “theoretically slow” with “slow in practice” and on
some problems the former is true of the simpler methods but the latter is
not. On other occasions, these methods perform well because they make
fewer assumptions about the smoothness of the surface f(x).

7

2.1 Stochastic gradient methods

This class of methods typically includes steepest descent methods with di-
minishing step size. It is assumed that the gradient is computed with some
error, that has 0 mean and bounded variance.

An important example of such a case is the fitting of a model to data. Let
DN be an i.i.d sample of size n from an unknown distribution. Denote by
f(θ) = − 1

N
lnP (DN |θ) the negative log-likelihood to be minimized. Because

the sample is i.i.d., f(θ) = − 1
N

∑N
i=1 ln p(x

i|θ). Since f is a sum, so will be
the gradient:

∇f(θ) = − 1

N

N∑

i=1

∂p(xi|θ)
∂θ

p(xi|θ) (31)

If N is large, something desirable from the statistical point of view, then the
computation of the gradient is very costly (linear in N). A practical option
is to take

dk =
∂p(xi|θ)

∂θ

p(xi|θ) (32)

where xi is a randomly sampled point from DN . Let PX be the true data
distribution and P̂X the empirical distribution induced by the sample DN .
Note that the direction dk satisfies EP̂ [d

k] = ∇f .

More remarkably, this method can naturally be adapted to on-line learning;
i.e situations where data come one by one, and are not stored but used
immediately to update the parameters, then discarded. Then xi ∼ PX ,
f = EP [− ln p(X|θ)] (we denote by p the model, and by P the true data
distribution), and di = −∇θ ln p(x

i|θ). It can be easily seen that EP [d
i] =

∇f . Also, in many cases, it can be shown that the variance of dk is bounded.

This example points out that:

• the function f and its gradient ∇f are both expensive to evaluate,
because they are proportional to the potentially large sample size N
• therefore, we want to avoid not only the ∇2f computation, but also
the ∇f computation and even the line search which entails repeated
evaluations of f
• on the other hand, evaluating a noisy version of the gradient is (assumed
to be) fast.

8

Thus, it pays to take many imprecise steps, instead of few but very compu-
tationally demanding precise steps. It remains to see if such a method can
effectively find a minimum.

It has been proved under various technical conditions1 that stochastic gra-
dient methods converge to the true optimum if the step sizes αk satisfy
∑

k α
k = ∞,

∑

k(α
k)2 < ∞ (the latter implies αk → 0) and the noise vari-

ance is bounded. Essentially, for convergence the αk’s should decrease like 1
k
.

Note however that typically in practice the decrease needs to be very slow,
almost constant e.g 1

b+k/c
with b, c large numbers.

While these results are general and old, with the advent of very large data
sets, interest in stochastic gradient for fitting statistical models has been
revived and new results specifical to this context are advancing the under-
standing of this method.

In particular, it is assumed that (i) E[dk] = ∇f(xk), (ii) V ar dk ≤ G2, a
known constant, and for the proofs, that (iii) f is λ-strongly convex. It is
not assumed that f is differentiable (in this case ∇f above has the meaning
of a subgradient, defined later in the context of convex functions).

If there are constraints on θ, we additionally assume that the projection
ΠAθ = argmin

θ′∈A
||θ − θ′|| can be computed efficiently (e.g. θ � 0).

Stochastic Gradient Descent (SGD)
Input G2 upper bound on the variance, λ, c > 1/2 a constant giving the

step-size, [optional α ∈ (0, 1], K=total number steps]
for k = 1, 2, . . .K
1. get dk

If in a statistical learning task, we sample a point xi at random from
D and compute dk based on it. Alternatively, we can sample a random
permutation of D and pick the points sequentially from it.

2. update θ

θk+1 ← θk − c

λk
dk (33)

3. if k > (1− α)K accumulate θ̄ → θ̄ + θk

1These results are best known under the name of Robbins-Munro theory of stochastic

approximation.

9

Average

θ̄ ← θ̄

αK
(34)

Output θ̄ (or optionally θK)

Thus, the algorithm takes steps proportional to 1/k and averages the last
α fraction of steps. When α = 1, the average of all steps is taken, but
(as the next theorem shows) theoretical convergence is faster when α <
1, i.e. when the initial values are discarded. Practically, one has noticed
that no averaging, i.e. taking the last sample θK has also good convergence
properties, but (as expected) larger variance than the averaged θ̄.

Proposition 9 Assume f is λ-strongly convex, θ∗ is the true optimum of f ,
and that assumptions (i,ii) above hold as well. Then, after K steps of the
SGD algorithm

1.

E[||θK − θ∗||2] ≤ c′
G2

λ2K
(35)

where c′ is a constant that depends on c but not on G2, λ, T .
2. if α = 1 and the problem is smooth, or if α < 1 and any problem,

smooth or non-smooth,

E[||f(θ̄)− f(θ∗)||] ≤ c′′√
K

(36)

where c′′ is a constant that may depend on c, α, λ,G2 and other param-
eters, but not K.

[To add: relation to Fisher information]

Stochastic gradient and analog techniques are widely used in machine learn-
ing: training of neural networks, reinforcement learning (the TD-λ and Q-
learning procedures are stochastic gradient methods), speedup of boosting.

[Exercise: Prove that least-squares linear regression is also (under mild con-
ditions) a strongly convex problem. Find λ and derive the SGD algorithm
to solve it. Consider if/when the SGD algorithm would be faster than com-
puting the closed form solution.]

10

2.2 Example: Linear classification with hinge loss

The following example is a classic in statistical learning. We will examine it
in two formulation. The first is an example of a problem where λ is known,
and the SGD theory from above applies. The algorithm has been shown to
be empirically effective as well as simple.

In the second instance, the above theory does not apply, but another theorem
demonstrates some of the properties of the resulting classifier.

We start with a definition: Assume that y ∈ {±1} (binary classification) and
f(x) ∈ R, so that the classifier outputs ŷ(x) = sgn f(x). The hinge loss for
classification is the following loss function

Lh(y, f(x)) =

{
0 if yf(x) ≥ 1
1− yf(x) if yf(x) < 1

= [yf(x)− 1]− (37)

In words, an error is penalized linearly by how far f(x) is in the “wrong
direction” to which we add a penalty even for correctly classified examples
if the margin yf(x) is below 1.

We will fit the linear classifier

f(x) = wTx (38)

using this loss function.

In this section will make the simplifying assumption that the data D =
{(xi, yi)}i=1:N are linearly separable, i.e. there exists a w∗ that classifies
the sample with no error. Note that in general this w∗ is not unique.

Linear Support Vector Machine formulation. The optimization prob-
lem is a regularized one:

min
w

1

N

∑

i

Lh(y
i, wTxi) +

λ

2
||w||2 (39)

with λ > 0 a regularization parameter chosen by the user. The reason for
introducing this regularization will be explained later. For now, it suffices to
notice that the non-quadratic loss term is linear (with unknown slope) and
therefore the function f is by definition λ-strongly convex.

11

The stochastic part of the gradient is

∂Lh

∂w
=

{
yixi if i “error′′

0 if i “correct′′
(40)

where “correct” means that yif(xi) > 1. Thus, the SGD algorithm becomes

Initialize with w0 = 0, w̄ = 0
Iterate for k = 1, 2, . . .K
1. Pick a random i in 1 : N (or typically, pick i from a random per-

mutation of D, until D is exhausted, then repeat with a new random
permutation).

2.
dk = λwk − 1i”error”y

ixi (41)

3.

wk+1 = wk− c

λk

(
λwk − 1i”error”y

ixi
)

= wk(1−c/k)+ c

λk
yixi1i ′′error′′

(42)
4. w̄ ← w̄ + wk+1

Output w̄

The Perceptron Algorithm. The linear classifier (38) has been known
since the early machine learning day under the name of perceptron. The
following algorithm also dates from those days. There is no regularization,
and the margin −1 is dropped from the hinge loss. Thus, finding a classifier
for the dataset D is formulated as

min
w

1

N

N∑

i=1

[yiwTxi]− (43)

If the data is linearly separable, as we assume for now, the minimum value
of f is known to be 0; what interests is the (non-unique!) w that attains this
minimum.

Perceptron Algorithm
Initialize w = 0
For k = 1, 2, . . .

12

1. pick a data point i, calculate f(xi) = wTxi

2. if i is a mistake (i.e. ykwTxi ≤ 0)

w ← w + yixi (44)

until no more mistakes are made.
Output w

Proposition 10 The number of mistakes made by the Perceptron algo-
rithm is bounded by 1

γ2 where

γ = min
D

|(w∗)Txi|
||xi||||w∗|| (45)

with w∗ any linear separator of the data.

Exercise: it makes sense to take w∗ to be the separator that maximizes
γ, since this gives the tightest bound. Find what this w∗ is and what the
interpretation of γ should be in this case. Assume that ||xi|| = 1 for all i.

[TO DO: Proof of Proposition]

2.3 Numerical evaluation of the gradient

Sometimes, if the gradient is expensive to compute (and f(x) is presumably
not), the gradient can be evaluated by finite differences. Let ui represent the
unit vector of coordinate i. The forward difference is

∂f

∂xi
(xk) ≈ f(xk + hui)− f(xk)

h
(46)

and the symmetric difference is

∂f

∂xi
(xk) ≈ f(xk + hui)− f(xk − hui)

2h
(47)

The symmetric difference involves twice as much computation, but it is sig-
nificantly more stable numerically (the rates of converges are respectively
O(h) for the forward method and O(h2) for the symmetric method).

13

It is important to remember that h need not be extremely small (remember
the ǫmachine limit!), but that it is good to choose the best h for each coordi-
nate separately. This is because different coordinate axes may have different
measurement units and rates of variation of ∇f , and it may be impossible
to find one h which is acceptable for all.

2.4 Coordinate descent

Here, the direction of descent dk is always one of the coordinate axes uik .
Hence xk+1 = xk + αkuik . Note that line search is necessary, and that the
minimum can be on either side of xk so αk can take negative values.

Theoretical and empirical results suggest that coordinate descent has similar
convergence properties as the steepest descent method (i.e linear in the best
case).

While in a general case coordinate descent is suboptimal, there are several
situations when it is worth considering

1. When line minimization can be done analytically. This can save one
the often expensive gradient computation.

2. When the coordinate axes affect the function value approximately inde-
pendently, or (in statistics) when the coordinate axes are uncorrelated.
Then minimizing along each axis separately is (nearly) optimal.

3. When there exists a natural grouping of the variables. Then one can op-
timize one group of variables while keeping the other constant. Again,
we hope that the groups are “independent”, or that optimizing one
group at a time can be done analytically, or it’s much easier than
computing the gradient w.r.t all variables simultaneously. This idea is
the basis of many alternate minimization methods, including the well
known EM algorithm.

2.5 The simplex method

This is a method that does not evaluate derivatives. (Not to be confused
with the Simplex algorithm of linear programming!) A set of n− 1 points is

14

maintained, and iterative replacement of the worst of them aims to move the
simplex so that it encloses the optimum, and to simultaneously shrink it so
that the optimum is bracketed with small tolerance.

Simplex method

Initialize x1, . . . xn+1 points in general position (i.e that enclose a non-
zero volume)
Denote xmax, fmax, fmin respectively argmax

i
f(xi),maxi f(xi),mini f(xi),

and x̂ the mean of {x1:n+1} \ xmax.
1. Reflection Compute xref = x̂+ (x̂− xmax) and fref = f(xref).
2. If fref > fmax, xnew = argmin(f((xref + x̂)/2), f((xmax + x̂)/2) and go

to 5
3. If fmin < fref ≤ fmax, xnew = xref and go to 5
4. If fmin ≥ fref try to expand

xexp = xref + (xref − x̂), xnew = argmin(fref , f(xexp)).
5. replace xmax with xnew, then recompute fmin, xmax, fmax

The algorithm is not guaranteed to converge in all cases, but it can be shown
that it works for convex f . The above is not the most efficient implementa-
tion, it’s the one that’s easier to read. Consult also NR for this algorithm.

3 Stopping criteria

What we want is to stop when ek ≤ tol, where tol is some redefined
tolerance, and ek is the current error w.r.t f or x. The problem is that, not
knowing x∗, the error ek cannot be computed, only estimated. Usually, by
estimate, we mean an upper bound on the true error. To note that, if the
problem is parameter estimation, we care about the value x∗ which represents
the unknown parameter. For an optimization problem that is not related to
statistical learning, it may be the case that the loss f(x∗) is more important
than the actual value of x∗.

In what follows, we shall see various recipes for stopping, that depend on
progressively less information (and are less accuarate in the same measure).

15

1. Newton steps The best estimate of the distance to x∗ from the infor-
mation usually available is the Newton step. Hence, one could use the
rule

||∇2f(xk)−1∇f(xk)|| ≤ tol (48)

Often the above expression is too expensive to compute; you can save
time by estimating it only every L iterations, assuming that its values
don’t change much at one iteration. (This holds for the Newton steps
as well, not only for the stopping test, however it’s unsafe if the Hessian
is not positive definite).
Practically, assuming that the direction of search incorporates a “good”
variable scaling, (i.e NOT in steepest descent) one can stop when

||dk|| ≤ tol OR ||αkdk|| = ||xk+1 − xk|| ≤ tol (49)

The two are pretty much equivalent in the asymptotic regime, as αk

should be approximately 1 in that case. For steepest descent, the latter
rule is used too, but it offers no guarantees.

2. Gradient descent with information on the Hessian
Proposition 11 If the smallest eigenvalue of ∇2f(x) ≥ m > 0 and
||∇f(x)|| ≤ ǫ for x ∈ S a neighborhood of x∗, then

||x− x∗|| ≤ ǫ

m
f(x)− f(x∗) ≤ ǫ2

m
(50)

Proof By first order Taylor expansion of ∇f

∇f(x)−∇f(x∗)
︸ ︷︷ ︸

0

≈ ∇2(x)(x− x∗) (51)

ǫ ≥ ||∇f(x)|| ≈ ||∇2(x)(x− x∗)|| ≥ m||x− x∗|| (52)

ǫ/m ≥ ||x− x∗|| (53)

Now the first order expansion of f around x gives us

f(x∗) ≈ f(x) +∇f(x)(x∗ − x) (54)

f(x)− f(x∗) ≈ ||∇f(x)(x∗ − x)|| (55)

≤ ||∇f(x)||||x− x∗|| (56)

≤ ǫ
ǫ

m
(57)

16

Proposition 11 highlights that in n dimensions, the key to a good ap-
proximation of the distance to the optimum is an estimate of the min-
imum curvature of f around the minimum (together with the assump-
tion that the third and higher derivatives are negligible in the region
around the minimum that we are considering). Having this, the local
and computable magnitude of the gradient ∇f(x) gives us an upper
bound on the error w.r.t both x and f .
Estimating m can be done either from specific knowledge about the
problem or numerically; in addition to computing the Hessian, com-
puting its smallest eigenvalue by iterative methods (Lanczos) is pro-
portional to n2.
So, knowing when to stop involves assumptions (or information) about
(1) the gradient, (2) the Hessian (its eigenvalues), (3) the continuity of
the Hessian. In practice, (1) is available, (2) can be evaluated numeri-
cally, (3) is usually assumed or derived from specific knowledge about
the problem.
Hence, when m is known, Proposition 11 gives us the desired upper
bounds on the error.

3. Gradient, Coordinate descent, etc with no information about the Hes-
sian If m is not known, the the following rules of thumb help:
(a) check that ∇2f ≻ 0 and, if feasible, that the third derivatives are

not too high
(b) if you care about the value f(x∗), stop when the relative decrease

∣
∣
∣1− f(xk+1)

f(xk)

∣
∣
∣ < tol′ with tol ≥ ǫmachine. Note that this tol′ should

be cca 1 order of magnitude smaller than the desired tol (i.e we
assume that in 10 steps convergence to tol would be reached).

3.1 Stopping stochastic gradient

From results similar to Proposition 9 follows that the number of steps to reach
tol is K = Ω

(
1

tol2

)
. Proposition 9 applied to the special case of learning from

a sample where tol ∼ 1
N

suggests that a constant number of passes over the
sample D suffices to reduce the variance V ar θk to the order of magnitude
1
N
.

Empirically, if we don’t know anything about the constants involved, stochas-

17

tic gradient is stopped when θk, the change in the average gradient, becomes
lower than a tol′.

18

