
STAT 538 Lecture 3

January 17, 2012

Unconstrained optimization – Part I
c©Marina Meilă

mmp@stat.washington.edu

Reading: For mathematical background, Appendix A of Boyd & Vanden-
berghe (BV). For Unconstrained optimization proper, BV Ch 9. The notes
follow mostly Bertsekas (B) Chapter 1. For the line minimization methods,
look at B (ch 1), at “Numerical recipes” (NR) chapter 10. NW (Ch 3, 6) is
also useful reading for both line minimization and Quasi-Newton.

1 Overview

Problem Find minx f(x) for x ∈ R
n or x ∈ D the domain of f . We will

assume also that f is a twice differentiable function with continuous second
derivatives.

Notation The gradient of f is the column vector

∇f(x) =

[

∂f

∂xi

(x)

]n

i=1

(1)

and theHessian of f is the square symmetric matrix of second partial deriva-
tives of f

∇2f(x) =

[

∂2f

∂xixj

(x)

]n

i,j=1

(2)

A local minimum for f is point x∗ for which

f(x∗) ≤ f(x) whenever ||x− x∗|| < ǫ

A global minimum for f is point x∗ for which

f(x∗) ≤ f(x) for all x in the domain of f

1

We say x∗ is a strict local/global minimum when the above inequalities
are strict for x 6= x∗. A minimum is isolated if it is the only local minimum
in an ǫ-ball around itself.

A stationary point for f is a point x∗ for which ∇f(x∗) = 0.

Proposition If f has continuous second derivative everywhere in D, and
x∗ ∈ D is a point for which ∇f(x∗) = 0 and ∇2f(x∗) ≥ 0 (∇2f(x∗) > 0)
then x∗ is a (nonsingular) local minimum for f .

In what follows, we will deal only with non-singular local minima. A non-
singular local minimum is strict and isolated.

In the analysis of algorithms and practically, it is important to know if f has
a finite global minimum; this is equivalent with f being bounded below by
a constant. Otherwise, the global minimum of f is −∞ and the optimization
algorithms will not converge on this problem (or will converge to other local
minima).

Many unconstrained optimization methods for finding a local minimum are
of the form:

xk+1 = xk + αkdk (3)

where dk ∈ R
n represents an (unnormalized) direction and αk > 0 is a

scalar called the step size.

Direction choice

• gradient based dk = −Dk∇f(xk) with Dk ∈ R
n×n

– steepest descent Dk = I
– stochastic gradient (more about it later)
– Newton-Raphson Dk = ∇2f(xk)−1

– conjugate gradient – implicity multistep rescaling of the axes “equiv-
alent” to Dk = ∇2f(xk)−1

– quasi-Newton – implicit multistep approximation ofDk = ∇2f(xk)−1

• non-gradient based

– coordinate descent dk = one of the basis vectors in R
n

2

Step size choice

• line minimization αk = minα f(x
k + αdk)

• Armijo rule (also called Backtracking) = search but not minimization
• constant step size αk = s
• diminishing step size αk → 0;

∑

k α
k =∞

2 How to evaluate an optimization method?

• Does it converge to a minimum?
• How fast?
• Practical issues: Is it easy to implement or tune? Available software?

As we shall see, all the methods described here converge to a minimum, but
some of the require the function f to have additional “good” properties.

For the second question, the answer is usually given in terms of rates of
convergence, because of the general assumption that we’ll use an iterative
algorithm to find the minimum.

Let ek = xk − x∗ or ek = f(xk)− f(x∗) denote the “error” at step k. Then,
an algorithm has a rate of convergence of order p if

||ek+1|| ≤ β(||ek||)p for some 0 < β < 1 (4)

In the above, p > 0 but not necessarily an integer. However, the most
common cases are p = 1 (linear) and p = 2 (quadratic). A rate of p < 1
is possible but is considered too slow in practice. Superlinear scales are
desirable – and often achievable.

Note that the use of the term “linear” here is inconsistent with its use in e.g
complexity theory. If an optimization algorithm is linear, that means that
the error decreases exponentially with k, as ||ek|| ≤ βk||e0||.

In optimization problems, there are various ways of expressing the computa-
tional complexity of an algorithm:

• number of flops (floating point operations) per iteration, usually as a
function of n the dimension of the problem

3

• number of function or gradient evaluations per iteration
• number of iterations; this latter quantity is given implicitly, by the rate
of convergence.
• memory requirements

• With the increased complexity and variation of computer systems, the
above mentioned number of operations is becoming obsolete. Algo-
rithms are increasingly judged by other, system-related qualities, like:
type of memory access (do they access memory in blocks or randomly),
cache misses, etc. These criteria are beyond the scope of this course,
but what you need to remember is that the texbook properties on an
algorithm alone do not always predict its performance on the system
you are going to run it. You may need to experiment with parameters
and with algorithms to determine which algorithm is better suited for
your data and system.

There are two regimes for each algorithm:

• the transitory, or approach regime, when xk is far away from x∗

• the asymptotic regime, near x∗ – most classic results are about this
regime

The theoretical (and practical) behavior of optimization algorithms will strongly
depend on the properties of the function f to be optimized around its min-
imum x∗. Typically, we will assume that the function is twice differentiable
and that its Hessian ∇2f is continuous and strictly positive definite around
x∗. But other, weaker, conditions on f also indicate an f that is “easy” to
minimize. Here are two of the most common ones.

We say that the problem minx f is a smooth minimization problem if f it is
upper bounded by a quadratic function around x∗, i.e. iff there exists M > 0
so that

f(x)− f(x∗) ≤ 1

2
M ||x− x∗||2

on a neighborhood of x∗. This property indicates that f , even though it may
not be differentiable, behaves “almost like a quadratic”, in the sense that
local quantities (gradient, Hessian) are informative w.r.t the minimum. An
example of a non-smooth minimization problem is minx |x|. The gradient

4

∇f is ±1 everywhere but in 0, so it gives us information on which side of x
the minimum lies, but its size does not tell us how far we are from x∗.

Note that the term smooth above refers to the minimization problem and
not to the function f , which may not be smooth itself. [Exercise: Prove that
if f has a continuous Hessian around x∗ and if ∇2f(x∗) ≻ 0 the problem is
smooth.]

Another criterion that distinguishes easier problems is that of strongly con-
vexity of f . Essentially, f is strongly convex when it is lower bounded by a
quadratic function (more about this when we study convexity). This prop-
erty indicates that the minimum x∗ is “well isolated”, or, in other words, if
f(x) is close to the optimum, then x will also be close to x∗. Hence, this prop-
erty lets us calculate the precision in x from the (easier to obtain) precision
in f .

3 Line minimization algorithms

3.1 Line minimization by the Golden Section Rule

(See also NR or NW)

1. Bracket the minimum. Find an interval [0, s] that contains the desired
α. This can be done by iteratively doubling s until f(xk+sdk) > f(xk).

A more general definition of a bracketed minimum (not assuming that
the function is decreasing at xk in the direction of dk is to find a triplet
of points on the line a = xk, b, c with b between a and c and f(b) <
f(a), f(c). NR gives a method of finding such a triplet by starting with
an initial value for b and iteratively expanding the candidate triplet.

2. Find the minimum in [0, s]; this is the Golden Section method proper

R the golden number is the positive root of the equation

R

1
=

1−R

R
(5)

5

The reason is given by the figure below: we want to place point C in the
segment AB so that

AC

AB
=

BC

AC
(6)

A BC

Golden Section Algorithm

1. Start with a bracketing triplet x0 < x2 < x1 so that f(x2) < f(x1), f(x0)
and x2 − x0 = R(x1 − x0).

2. Choose x3 so as to divide the longest of x0x2, x1x2 in two parts having
ratio R

3. If f(x3) < f(x2)

then x1 ← x2, x2 ← x3 (this eliminates an interval representing a
fraction 1−R of the initial interval)
else x0 ← x3 (this eliminates an interval representing the fraction
R× R = 1− R of the initial interval)

4. Stop if x1 − x0 < tol a desired tolerance, else repeat the previous step

Note that after each step, the interval containing the minimum shrinks by
R = 0.681 The value R is optimally chosen so that the reduction in step
3 of the algorithm is the same in either case. If the initial bracketing triplet
is not in the golden ratio R, it can be shown that the subsequent ratios will
converge towards R.

How small shall we make the tolerance tol be? Near the (unidimensional)
minimum b, f(x) ≈ f(b) + (x− b)2/2f ′′(b) with the second term being much
smaller than the first. Hence, when this term becomes a factor of ǫ smaller,
it will be negligible when added to the first, and we may just as well stop
the iteration. This happens when

|x− b| <
√
ǫ|b|

√

2f(b)

f ′′(b)b2
(7)

6

The last
√

is often of order 1, therefore the above formula implies that the

tolerance should be set to be of order
√
ǫ|b| with ǫ being the ǫ-machine of

the current implementation. For standard double precision numbers,
√
ǫ ≈

3.10−8.

If the line minimization is performed without first bracketing the minimum,
i.e we look for the best αk ∈ [0, s] for some arbitrarily chosen s, the method
is called truncated minimization.

3.2 The Parabolic Interpolation method

If the function f is smooth then a method that assumes that will converge
faster than the worst-case-safe Golden ratio rule. This is the parabolic inter-
polation method that assumes that the function is approximately a parabola
in the interval considered.

Parabolic Approximation Algorithm

1. Start with a bracketing triplet x0 < x2 < x1 so that f(x2) < f(x1), f(x0).
2. Fit a parabola through the three points and let x3, f(x3) be its mini-

mum. (We assume f(x3) < f(x1), otherwise this method is not useful.)
3. If x3 ∈ (x0, x2)

then x2 ← x3, x1 ← x2

else x0 ← x2

4. Stop if x1 − x0 < tol a desired tolerance, else repeat the previous step

In NR you can find the Brent algorithm which combines the golden section
and the parabolic interpolation algorithms. It attempts to use parabolic
interpolation, but detects when this method fails to approach the minimum
and switches to golden section.

3.3 The Armijo (Backtracking) Rule

Intuition Assume that we found a bracketing interval [0, s] for αk. We start
with αk = s and decrease it exponentially until we find that the function f

7

has decreased “enough”. What is “enough”? In an infinitesimal interval near
xk along the direction of descent, the function will decrease linearly, hence

f(xk)− f(xk + αdk) ≈ α(−∇f(xk)Tdk) (8)

For a finite interval, we will ask for a decrease in f that is at least σ < 1
smaller than the above. Note that for a sufficiently small α such a decrease
can always be attained.

Armijo Line Search

1. Start with αk = s, β < 1, σ < 1
2. If f(xk)− f(xk + αkdk) > σαk(−∇f(xk)Tdk)

• then STOP
• else αk ←− βαk and repeat

In practice, β ≈ 0.5 and σ << 1 e.g 0.1, 0.01 or even 0; s = 1 if no bracketing
is done.

3.4 The Wolfe conditions

These conditions are stronger than the condition ensured by the Armijo rule;
they are useful to get optimal performance from the Conjugate Gradient and
Quasi-Newton methods.

f(xk)− f(xk + αkdk) > c1α
k(−∇f(xk)Tdk) (sufficient descent) (9)

∇f(xk + αkdk)Tdk ≥ c2∇f(xk)Tdk (curvature) (10)

with 0 < c1 < c2 < 1 (11)

The first condition is identical to the Armijo rule. The second one ensures
that the step taken is not too small, by enforcing that the derivative along the
search direction has increased relative to the derivative at 0. The constant
c2 is typically chosen near 1, .e.g c2 = 0.9.

An algorithm to ensure the Wolfe conditions is given in NW (Algorithm 3.5,
pages 60–61). The algorithm searches by sometimes decreasing the interval
(to ensure sufficient decrease) and sometime enlarging it (to ensure curva-
ture). Such an algorithm is usually part of the implementation of Quasi-
Newton methods.

8

4 Multidimensional minimization. The choice

of direction

4.1 The steepest descent method

The steepest descent method follows the direction of the gradient. It can be
shown [B] that gradient descent with line minimization has a linear rate of
convergence. For other line search methods, including constant step size, the
rate of convergence is no larger.

The convergence coefficient β of equation (4) can get very close to 1 (very slow
convergence) if the Hessian is ill conditioned. Let M,m denote respectively
the largest and the smallest eigenvalue of ∇2f(x∗). By continuity, we can
assume that the Hessian around x∗ is approximately the same. If M >>
m then the function will have a “long, narrow valley” with an almost flat
“bottom” around x∗, oriented along the smallest eigenvector. The gradient
will be almost perpendicular to the valley, and the algorithm, even with the
optimal line minimization, will advance very slowly. See also Part II for a
more precise evaluation of this effect.

Hence, all the following methods (except for stochastic gradient) can be seen
as “applying some coordinate transformation” that will turn the elongated
ellipses into circles, so that steepest descent in this new coordinate frame
can move rapidly towards the optimum. Equivalently, having such a trans-
formation (which is represented by the Hessian matrix), one can apply the
“inverse transformation” to the descent direction, which is precisely what the
Newton-Raphson method does.

4.2 The Newton-Raphson method

Assume that our function is quadratic, i.e

f(x) =
1

2
xTAx+ bTx+ c with A ≻ 0. (12)

9

Then,

∇f(x) = Ax+ b (13)

∇2f(x) = A (14)

and the minimum can be computed analytically as the solution of Ax+b = 0,
namely x∗ = −A−1b. Equivalently, for any x

x∗ − x = −A−1b− A−1Ax = −A−1(Ax+ b) = −∇2f(x)−1∇f(x) (15)

Hence, if f is quadratic, from any point x we can move in one step equal to
−∇2f(x)−1∇f(x) to the minimum. Therefore, the Newton-Raphson method
takes Dk = ∇2f(x)−1 as if the function was quadratic. Usually one also does
a line search method, i.e αk 6= 1 in practice.

Newton-Raphson is practically and theoretically very fast once we are in the
vicinity of the optimum (Part II of this lecture gives one result). However,
its behavior far away from the optimum must be monitored carefully. Note
for example that this is not a descent method, in the sense that it’s not
guaranteed that f(xk+1) < f(xk) unless some form of line minimization is
used. Also, the method is attracted by local maxima just as much as by
local minima, so attention must be paid any time the Hessian is not positive
definite. See [B] for modern methods that deals with these problem (trust
region method and variations of quasi-Newton methods).

Another drawback is the need to compute and store the Hessian (O(n2)
storage and O(n2−−3) operations). Computation makes Newton-Raphson
prohibitive in high dimesions.

A quick fix called diagonal scaling, where only the diagonal terms of the
Hessian are computed.

Dk = diag

{

∂2f

∂x2
i

}

(16)

This method is obviously linear in storage and number of operations but it
tends to underestimate the ratioM/m. Diagonal scaling amounts to rescaling
each variable separately, and it is effective in those cases when the variables
have very different ranges because of “imbalanced” measurement units (e.g
in one direction the unit is miles, in the other one it is millimeters).

It is useful to make also the general observation that the Newton method is
“scale free”, i.e it is unaffected by linear coordinate changes.

10

Computing the direction Let H = ∇2f(xk), g = ∇f(xk). Computing the
descent direction d = −H−1g by inverting the Hessian is neither the most
efficient, nor the most exact method in terms of numerical error. Here are
two alternatives:

1. Solve the system Hd = −g. The matrix H being symmetric, ≻ 0, it
can be factored into a product H = LLT , with L lower triangular. This is
called the Cholesky factorization and takes ∼ n3

6
operations. Solving an

upper/lower triangular linear system is ∼ n2

2

2. Minimize the quadratic function 1

2
dTHd + gTd, whose gradient equals

Hd + g. Of course, the minimization should be done by a method other
than Newton-Raphson! A possibility is to use steepest descent, starting
from d = −g. Note that after every step, the current approximation d of
the solution is a descent direction. The number of flops per iteration for this
method is ∼ n2

2
.

11

