
STAT 538 Lecture 4

Boosting and other Averaging Methods
c©Marina Meilă

mmp@stat.washington.edu

First version May 2000. Revisions 2006, 2007, 2010, 2012

1 There’s more than one way to average predictors

Classification will be the running exaple here, but most results hold for other
prediction problems.

Denote B = {b} a base classifier family

Averaging: f(x) =
∑M

k=1 β
kbk(x)

f is real-valued even if the bk’s are ±1 valued

• can reduce variance

• can reduce bias

• can compensate for local optima (a form of bias)

• if b1, b2, . . . bM make independent errors, averaging reduces error. We
say that b1 and b2 make independent errors ⇔ P (b1 wrong |x) =
P (b1 wrong | x, b2 wrong)

Averaging is not always the same thing. Depending how we choose
B, b1, b2, . . . bM and β1, β2, . . . βM , we can obtain very different effects.

Also note that the averaging denoted by
∑M

k=1 β
kbk(x) can stand in different

context for averaging in different probability spaces. For instance, we will
see that in Bagging averaging is over samples of size N , while in Bayesian
averaging, the averaging is over the functions b ∈ B, and in Boosting the
summation is not an averaging after all.

We will examine

1

• Bayesian averaging (briefly)
• Bagging (briefly)
• Boosting

1.1 Bayesian averaging - a procedural summary

Assume any predictor b ∈ B could be the “true” predictor with some prior
probability P0(b). Learning means changing the probability distribution of
b after seeing the data.

Before seeing data P0(b) prior distribution over f
After seeing D P (b|D) posterior distribution over f

Bayes formula P (b|D) = P0(b)P (D|b)
P

b′∈B P0(b′)P (D|b′)

Classifica-

tion of a new instance by Bayesian averaging:

f(x) =
∑

b∈B

b(x)P (b|D)

or
P (y|x,D) =

∑

b∈B

P (b|D)1b(x)=y

Hence classifiers (or more generally predictors) are weighted by their poste-
rior probability.

Intuition: The likelihood becomes more concentrated when N increases

Bayesian averaging in practice. Summation (or integration) over b ∈ B
usually intractable. Practically, one samples a few b’s: b1, b2, . . . bM

P̂ (bk|D) =
P0(b

k)P (D|bk)
∑M

k′=1 P0(bk′)P (D|bk′)

Priors in practice. Priors should reflect our knowledge about b. If B and
P0 represent exactly the function class that the true classifier belongs to and
our prior knowledgde, then Bayesian averaging is optimal, in the sense that
it minimizes the cost of the average future misclassifications.

Even if we choose the P0(b) for computational convenience only, averaging
can have benefic effects

• variance reduction

2

• bias reduction
• if there is enough data, the prior, even if “wrong”, is overriden by the

likelihood

Usual priors

• uninformative prior - uniform in some parametrization
• “MDL” (Minimum Description Length) prior - penalizes complex mod-

els
P0(b) ∝ 2−#bits to encode b

bits ∼
– # splits in decision tree

– degree of polynomial

– “effective” number of parameters

1.2 Reducing variance: Bagging

What if we had several (independently sampled) trainig sets D1,D2, . . .DM?

• we could train classifiers {b1, b2, . . . bM} on the respective D1,D2, . . .DM

• we could estimate EP (b)[b] ∼ f = 1
M

ΣM
k=1b

k

• f has always lower variance than bk

Idea of bagging: sample D1,D2, . . .DM from the given D and estimate bk

on Dk

f(x) = sign
1

M

M∑

k=1

bk(x)

3

− −

−
−

−
−

+

+
+

+

+

sample N ′ ≤ N samples ×M times
D1 D2 D3

+

+

+

−
−

+−

−

++

+
+

−

−

− −

−

−

−
+

+

+

Resulting “bagged” classifier F = 1
3(b1 + b2 + b3)

−

+

Thus, bagging is a form of boostrap. It was shown theoretically and empiri-
cally that bagging reduces variance.

Bagging is good for

• base classifiers with high variance (complex)

• unstable classifiers (decision trees, decision lists, neural networks)

• noisy data

4

Example 1 A variant of bagging for decision trees is called random trees.
A large ensemble of decision trees is fitted to the same data set, introducing
randomness in various ways, like (1) resampling the data set, (2) taking
random splits, with probabilities that favor “good” splits, etc. The output
predictor is the (unweighted) average of all the trees.

This method works reasonably well for prediction, and can be extended to
more than classification (regression, feature selection, even clustering).

1.3 Reducing bias: Boosting

Base classifier family B has large bias (e.g. linear classifier, decision stumps)
but learning always produces b that is better (on the training set) than
random guessing.

Preconditions for boosting

1. B is a weak classifier family. For any D there can be found b ∈ B such
that the training error of b on D is bounded below one half.

0 < L̂(b) ≤ δ <
1

2

2. Learning algorithm can take weighted data sets.

Idea of boosting: train a classifier b1 on D, then train a b2 to correct the
errors of b1, then b3 to correct the errors of b2, etc.

Example 2 Boosting with stumps, i.e. decision trees with a single ssplit
(c1 . . . c4 are the coefficients β1:4).

− −
− −
− −

+
+ ++

+

o

o

c1=1.5

−

+
− −
−

−
− −

+
+

++

+o

o o

c2=1.3

−

− −
+

+

−

−

−
−

+

+
+

+

ooo

c3=1.4

−

− −
+

+

+

−

−

−

+

−

−

−
−

+

o

c4=1.6

−
+

5

AdaBoost Algorithm (Schapire-Singer variant)
Assume B contains functions b taking values in [−1, 1] or {±1}

Input M , labeled training set D
Initialize f = 0

w1
i = 1

N
weight of datapoint xi

for k = 1, 2, . . . M
1. “learn classifier for D with weights wk” ⇒ bk

2. compute “centered error” rk =
∑

i w
k
i yib

k(xi) ∈ [−1, 1]
then εk = (1− rk)/2, 1− εk = (1 + rk)/2

3. set βk = 1
2 ln 1+rk

1−rk = 1
2 ln 1−εk

εk

4. compute new weights wk+1
i = 1

Zkw
k
i e

−βkyib
k(xi) where Zk is

the normalization constant that makes
∑

iw
k+1
i = 1

Output f(x) =
∑M

k=1 β
kbk(x)

Remarks

1. If b(x) ∈ {±1} then yib(xi) ∈ {±1}; if an error occurs 1−yib(xi)
2 = 1;

otherwise this expression is equal to 0. Thus, εk = (1−rk)/2 “counts”
the errors.
If b(x) ∈ [−1, 1] then rk ∈ [−1, 1] and the logarithm in step 3. is
always defined.

2. If b ∈ {±1}, then step 4 can be written equivalently (up to a multi-
plicative constant)

wk+1
i =

{
1

Zkw
k
i if bk(xi) = yi

1
Zkw

k
i e

2βk
if bk(xi) 6= yi

(1)

This form corresponds to the so-called DiscreteAdaBoost algo-
rithm, the first AdaBoost algorithm published, which assumed b(x) ∈
{±1}. As we shall see later, modern boosting algorithms dispense with
the assumption b ∈ [−1, 1] too.

3. The logarithm in step 3 is > 0 whenever εk < 1/2.

1.4 Boosting - properties on the training set

1. An interpretation of the weights

wk
i =

1

N

∏

k′≤k

e−βk′yib
k′ (xi)

Zk′
=

e−yif
k−1(xi)

N
∏

k′≤k Z
k

(2)

6

Hence, the weight of example i at step k is proportional to e−yif
k−1(xi)

the exponential of its negative margin. Examples that have been hard
to classify get exponentially high weights. Examples that are classified
with high margins get vanishingly small weights.

2. The normalization constant is an average “loss” If we sum both sides
of (2) over i we obtain

1 =

∑

i e
−yif

k−1(xi)

N
∏

k′≤k Z
k
, (3)

or
∏

k′≤k

Zk =

∑

i e
−yif

k−1(xi)

N
≡ L̂φ(fk−1) (4)

where
φ(z) = e−z. (5)

and
Lφ(y, f(x)) = φ(yf(x)) (6)

Hence, the r.h.s of (4) is the average over the data set of the expo-
nential loss Lφ.

The function φ decreases with the margin, thus decreasing L̂φ will
produce a better classifier (on the training set). In this sense, Lφ is an
alternative loss function for classification.

3. L̂φ decreases exponentially with M .
For simplicity, we show this in the case of DiscreteAdaBoost

Zk =
n∑

i=1

wk
i e

βksgn(yib
k(xi)) (7)

= eβ
k
∑

i=err

wk
i

︸ ︷︷ ︸

εk

+e−βk
∑

i=corr

wk
i

︸ ︷︷ ︸

1−εk

(8)

= eβ
k

εk + (1− εk)e−βk

(9)

=

√

1− εk
εk

εk +

√

εk

1− εk (1− εk) = 2
√

(1− εk)εk ≤ γ (10)

where γ < 1 depends on δ the maximum error. It follows that

L̂φ(fM) =

M∏

k=1

Zk ≤ γM (11)

7

4. The training set error decreases exponentially with M .
Note that φ(z) ≥ 1z<0 for all z (see also figure 1). Therefore

L̂(fk) =
1

N

N∑

i=1

1[yifk(xi)<0] (12)

≤ 1

N

N∑

i=1

e−yif
k(xi) = L̂φ(fk) ≤ γk (13)

In other words, the training error L̂(fk) is bounded by a decaying
exponential. Moreover, since L̂(fk) ∈ {0, 1/N, 2/N, . . . 1}, it follows
that after a finite number of steps, when γk0

< 1/N , the training error
will become 0 and the training data will be perfectly classified!

5. The test set error and overfitting Experimental results have shown
however that one should NOT take M to be equal to the above k0;
the number of steps for good generalization error is often much larger
than k0 (and sometimes smaller). The above shows a typical plot of
L̂ and L (which can be estimated from an independent sample) vs the
number of boosting iterations.

0 200 400 600 800 1000
Boosting iterations

E
rr

or

6. Myth: “Boosting doesn’t overfit”
Reality: Any algorithm overfits, including boosting. But in practice,
overfitting occurs much later than predicted initially by the existing
theory. The next section will show the more recent view of boosting,
that explains why overfitting occurs only after apparently a very large
number of parameters have been fit to the data.

7. Boosting as gradient descent is the topic of the next section. In
brief, AdaBoost is gradient descent in Lφ(f) with

8

• bk the direction at step k

• βk the step size

2 Boosting as descent in function space

2.1 Boosted predictors are additive models

An additive model (for prediction) has the form

f(x) ≡ E[Y |x] = α+ b1(x1) + b2(x2) + . . . + bn(xn) (14)

In other words, it is a linear model, where each coordinate has been non-
linearly transformed. A generalization of the above definition, which is still
called an additive model, is

f(x) = α+ β1b1(x) + β2b2(x) + . . .+ βMbM (x) (15)

This is a linear model over a set of new features b1:M .

Example 3 Linear model and neural net If bj = xj , j = 1 : n, the
model (15) is a linear model.

If bj ∈ { 1

1+e−γT x
, γ ∈ R

n} = B (the family of logistic functions with param-

eter γ ∈ R
n) then f(x) is a [two layer] neural network.

Additive Logistic Regression While the predictors above are well suited
for regression, for classification one may employ a logistic regression, i.e

f(x) ≡ P (Y = 1|x)
P (Y = −1|x) = α+ β1b1(x) + β2b2(x) + . . . + βMbM (x) (16)

[Generalized Additive Models. Link function. To write]

[Alg 9.2 HTF for Additive Logistic Regression]

Given the base family B, data, and a loss function L, an additive model for
prediction can be fit to data in several different ways.

• Fix M from the start and optimize over all the parameters and base
functions at once.

9

• Fix M from the start but optimize only one bj, βj at a time, keeping
the others fixed. This method of training is called backfitting.

• Optimize bj , βj sequentially, for j = 1, 2, . . . without refitting previ-
ously fit base models. In this case, M need not be fixed in advance.
This method is called forward fitting. It turns out that this is what
boosting does.

We will show that boosting is a form of (stochastic) gradient descent on
the surrogate cost L̂φ. Then, we discuss statistical properties of boosting,
and show various results that indicate that boosting is good in the expected
surrogate cost Lφ or in the expected true cost L01.

2.2 AdaBoost is steepest descent on training set

Assume that our goal is to minimize the surrogate cost L̂φ on the training
set.

At step k, fk ≡ f is fixed and we want to find a b which minimizes the cost
L̂φ(f + b) = 1

N

∑

i φ(yi[f(xi) + b(xi)]). We have

∂L̂φ

∂b(xi)
(f + b)

∣
∣
∣
∣
∣
b=0

= yiφ′(yif(xi)) (17)

The direction of descent We imagine b as a vector of values [b(xi)]. There-
fore the change in Lφ along “direction” b with step size β is approximately

L̂φ(f + βb)− L(f) = β
∑

i

b(xi)yiφ′(yif(xi)) (18)

The best b is the one that maximizes the (positive) decrease in L̂φ, i.e the
minimizer of ∑

i

yib(x
i)[−φ′(yif(xi))] (19)

If we replace now φ′(z) = −e−z and denote wi = e−yif(xi) then (19) becomes

argmax
b∈B

∑

i

yib(x
i)e−yif(xi) = argmax

b∈B

∑

i

wiyib(x
i) (20)

Finding the direction b is equivalent with step 1 of the AdaBoost algorithm,
training a weak classifier on the weighted data (note that here the weights

10

are not normalized by
∏
Zk). The resulting b can be seen as the best

approximate of the gradient of Lφ in B.

The line minimization. Now let us do line minimization: find the optimal
step size β in direction b. For this we take the derivative of Lφ(f +βb) w.r.t
β and set it to 0.

dLφ(f + βb)

dβ
=
∑

i

yib(x
i)φ′(yif(xi)) = −

∑

i

yib(x
i)e−yif(xi)−βyib(xi)

(21)
Set the above to 0 is equivalent to finding the (unique) root of

∑

i

wiyib(x
i)e−βyib(xi) = 0 (22)

If • b(x) ∈ (−∞,∞) then β amounts to a rescaling of b and is redundant.
• b(x) ∈ [−1, 1] then the line optimization gives us βk from AdaBoost

• b(x) ∈ {−1, 1} then the line optimization gives us βk from DiscreteAdaBoost

• The first case corresponds to the RealAdaBoost in the FHT variant,
described here for completeness
Real AdaBoost Algorithm (in the FHT variant)

Assume B contains real-valued functions
Input M , labeled training set D

Initialize f = 0
w1

i = 1
N

weight of datapoint xi

for k = 1, 2, . . . M
“learn classifier for D with weights wk ⇒ bk”

compute new weights wk+1
i = wk

i e
−yibk(xi) and normalize them to sum to 1

Output f(x) =
∑M

k=1 b
k(x)

• To get the AdaBoost updates we assume that b(x) ∈ [−1, 1]. Then
yib(xi),

∑

iwiy
ib(xi) ∈ [−1, 1]. We also make the approximation

e−βz ≤ 1 + z

2
e−β +

1− z
2

eβ (23)

which is true whenever z ∈ [−1, 1]. This follows from the convexity of
e−βt in the interval [-1,1] at point t = (1 + z)/2. By optimizing this
upper bound w.r.t β we get

z =
∑

i

wiy
if(xi) β =

1

2
ln

1 + z

1− z (24)

11

• We can also assume b(x) ∈ {±1}, the assumption of Discrete Ad-

aBoost. In this case yib(xi) = ±1 and we obtain

dL̂φ(f + βb)

dβ
=

∑

i corr

wie
−β −

∑

i err

wie
β = 0 (25)

0 = (1−
∑

i err

wi)− (
∑

i err

wi)

︸ ︷︷ ︸

εk

e2β (26)

β =
1

2
ln

1− εk
εk

(27)

This gives us the βk coefficient of the Discrete AdaBoost algorithm
(for alternative formulations of Discrete AdaBoost, this βk is up
to a factor of 2 which does not affect the algorithm).

To finish the analysis, let us look at the updated f and weights wi.

f ← f + βb (28)

wi ← wie
−βyif(xi) (29)

Hence, the boosting algorithm given at the beginning of this section and
many other variants can be seen as minimizing the cost Lφ(f) by steepest
descent in the function space B.

3 A statistical view of boosting (and more algo-
rithms)

It has been shown [Friedman et al., 1999] (FHT) that boosting can also be
seen as noisy gradient descent in function space when we replace the finite
training set with the true data distribution. The cost function and gradient
can be given a probabilistic interpretation. This point of view is useful in
two ways:

1. It shows that boosting is asymptotically minimizing a reasonable cost
function, so that we can expect the performace/and algorithm behav-
ior on finite samples to be a good predictor on its behaviour with much
larger samples.

12

2. It is an interpretation that allows on to create a very large variety
of boosting algorithms, like the Logit and Gentle AdaBoost pre-
sented hereafter.

We will consider the first point above, by now imagining that we do boosting
“at the distribution level”, i.e using PXY instead of the empirical distribution
given by the sample.

Hence, in the previous sections, we assumed that “learning a classifier”
means (practically, but see also Proposition 2 below) “find the best possible
minimizer in bk ∈ B to

∑N
i=1 w

k
i e

−yib(xi)”. Here we will assume that it means
(theoretically, see Proposition 2) “find the best possible approximation in B
to 1

2 log Pw(y=1|x)
Pw(y=−1|x)”.

The cost function for boosting is now Lφ(f) = E[e−yf(x)]. The notation
E[] represents the expectation w.r.t the joint PXY distribution. This is used
in the proofs, while in practice it is replaced by the average over the data
set.

Proposition 1 Denote px = P (y = 1|x). The cost Lφ(f) is minimized by

f∗(x) =
1

2
ln

P (y = 1|x)
P (y = −1|x) =

1

2
ln

px

1− px

And

px =
ef(x)

ef(x) + e−f(x)
P (y = −1|x) =

e−f(x)

ef(x) + e−f(x)
= 1− px (30)

Proof Since we are minimizing over all possible f ’s with no restrictions, we
can minimize separately for every f(x). Hence, let x be fixed

EPY |X=x
[e−yf(x)] = P (y = 1|x)e−f(x) + P (y = −1|x)ef(x)

and the gradient is

∂E[e−yf(x)|x]
∂f(x)

= −P (y = 1|x)e−f(x) + P (y = −1|x)ef(x)

By setting this to 0 the result follows.

13

Proposition 2 The Real AdaBoost (with “learn a classifier” defined at
the distribution level) algorithm fits an additive logistic regression model f
by iterative optimization of Lφ(f).

Proof Suppose we have a current estimate f(x) and seek to improve it by
minimizing Lφ(f + b) over b. In the proof we assume that b is an arbitrary
function, while in practice b will be chosen to best approximate the ideal f
within the class B.

Denote by px = P [y = 1|x] (the true value) and by p̂x the “estimate”

p̂x =
eb(x)

eb(x) + e−b(x)
(31)

Assume again x is fixed. Then, by a similar reasoning as above we have

Lφ(f + b) = E[e−yf(x)−yb(x)]

= E[e−f(x)e−b(x)px + (1− px)e
f(x)eb(x)]

By taking the derivative and setting it to 0 in a similar way to the previous
proof, we obtain that the new step is

f(x) =
1

2
ln

pxe
−f(x)

(1 − px)ef(x)
=

1

2

[

ln
px

1− px
− ln

p̂x

1− p̂x

]

(32)

Note that if one could exactly obtain the b prescribed by (32) the iteration
would not be necessary.

More interesting than the exact form of b above is the optimization problem
that leads to it.

Denote w(x, y) = e−yf(x). Then, b is the solution of

b = argmin
b∈B

EPXY w(X,Y)[e
−Y b] (33)

where PXY w(X,Y) denotes the (unnormalized) twisted distribution ob-
tained by multiplying the original data distribution with w(x, y). (Of course,
one may have to put some restrictions on PXY and B in order to obtain a
proper distribution.) Finally, note that the new f is f + b and the new
weights are w(x, y)e−yb(x) which finishes the proof.

14

Hence, the Real AdaBoost algorithm can be seen as a form of “noisy
gradient” algorithm at the distribution level. Note the absence of the co-
efficient α in the FHT formulation of Real AdaBoost. That’s because
in the Schapire and Singer version the minimization was first done by find-
ing a direction, then optimizing for step size, while in the FHT version the
minimization in equation (33) is over both direction and scale of f .

3.1 Why the e−yf cost? and other Lφ costs

• the “true” classification cost is 1yf>0 (called the 0–1 cost) is noncon-
vex, nonsmooth (has 0/no derivatives). We would like a surrogate cost
to have the following properties (satisfied by e−z)

• φ(z) is an upper bound of the 0–1 cost (this helps prove bounds of the
form L̂ ≤ L̂φ)

• φ(z) is smooth (has continuous derivatives of any order if f has them);
(this lets us use continuous optimization techniques to fit the classifier)

• φ(z) is convex (this leads to global optimization, which has been rec-
ognized as beneficial in practice; it also allows to prove bounds, rates
of convergence and so on)

• φ(z) is monothone (decreasing) (thus, when z > 0, driving the margins
to increase even if the classification is correct). It is sometimes an
advantage to have φ(z) decreasing for all z < 0, and sometimes a
disadvantage (e.g causes overfitting)

The following algorithm are derived by using different φ functions, and dif-
ferent descent strategies.

3.1.1 LogitBoost

Log likelihood cost of classification

Llogit(f) = EPX
[P (y = 1|x) ln P̂ (y = 1|x) + P (y = −1|x) ln P̂ (y = −1|x)]

(34)
where P̂ is the class probability predicted by the model f , as given in equa-
tion (30). We shall find the following notation useful:

y∗ = (y + 1)/2 ∈ {0, 1} for y ∈ {±1} (35)

15

−2 −1 0 1 2
0

1

2

3

4

5

6

7

8

9

yF

C
os

t

0−1 cost
exp(−yF)
hinge
−log(likelihood)
(yF−1)2

Figure 1: Examples of cost functions φ(z) for classification.

LogitBoost Algorithm

Assume B contains real-valued functions
Input M , labeled training set D

Initialize weights wi = 1
N

, f(x) = 0, class probabilities P̂i = 1
2

for k = 1, 2, . . . M

compute wi = P̂i(1− P̂i) zi = yi∗−P̂i

wi

fit bk(x) to zi by weighted least squares, i.e
minimize

∑

iwi(b(x
i)− zi)2

update f(x) ← f(x) + 1
2b

k(x) and P̂i ← ef(xi)

ef(xi)+e−f(xi)

Ouput sign f(x)

Proposition 3 The LogitBoost algorithm uses (approximate) Newton-
Raphson steps to maximize the log-likelihood of the data Llogit(f).

Proof We can rewrite the log-likelihood as follows

Llogit(f) = E[y∗ ln
ef

ef + e−f
+ (1− y∗) e−f

ef + e−f
] (36)

= E[(2y∗ − 1)f − ln(ef + e−f)] (37)

= E[(2y∗ − 1)f + f − ln(e2f + e0)] (38)

= E[2y∗f − ln(1 + e2f)] (39)

16

Conditioning on x, we compute the first and second derivative of Llogit(f+b)
w.r.t b(x) in b(x) = 0.

s(x) =
∂E[2y∗(f(x) + b(x))− ln(1 + e2f(x)+2b(x))]

∂b(x)

∣
∣
∣
∣
∣
b(x)=0

(40)

= E[2y∗ − 2e2f(x)+2b(x)

1 + e2f(x)+2b(x)
]

∣
∣
∣
∣
∣
b(x)=0

(41)

= 2y∗ − E
[

2e2f(x)

1 + e2f(x)

]

(42)

= 2(y∗ − E[P̂ (x)]) (43)

H(x) =
∂2E[2y∗(f(x) + b(x)) − ln(1 + e2f(x)+2b(x))]

∂b(x)2

∣
∣
∣
∣
∣
b(x)=0

(44)

=
∂
{

2y∗ − E
[

2e2b(x)

1+e2b(x)

]}

∂b(x)

∣
∣
∣
∣
∣
∣
b(x)=0

(45)

= 2E

[

−2e2f(x)+2b(x)

(1 + e2f(x)+2b(x))2
|x
]∣
∣
∣
∣
∣
b(x)=0

(46)

= −4E

[

−2e2f(x)

(1 + e2f(x))2

∣
∣
∣
∣
∣
x

]

(47)

= −4E
[

P̂ (x)(1− P̂ (x))|x
]

(48)

Note that H(x) represents only the diagonal of the (infinite-dimensional)
Hessian for this problem. The objective needs to be maximized and the
H(x) terms are negative. Therefore the (approximate) Newton-Raphson
update is

f(x) ← f(x)−H(x)−1s(x) (49)

= f(x) +
1

2

E[y∗ − P̂ (x)|x]
E[P̂ (x)(1 − P̂ (x))]

(50)

= f(x) +
1

2
E[

y∗ − P̂ (x)

P̂ (x)(1 − P̂ (x))

P̂ (x)(1 − P̂ (x))

E[P̂ (x)(1 − P̂ (x))|x]
|x] (51)

= f(x) +
1

2
Ew[

y∗ − P̂ (x)

P̂ (x)(1− P̂ (x))
|x] (52)

17

with w(x) = P̂ (x)(1−P̂ (x))

E[P̂ (x)(1−P̂ (x))|x]
. The update above is equivalent to

min
f

Ew

(

f(x) +
1

2

y∗ − P̂ (x)

P̂ (x)(1 − P̂ (x))
− (f(x) + b(x))

)2

 (53)

In practice we have the condition b ∈ B and the minimization is done over
B and with the sample average replacing the expectation E[].

Numerically

• it is better to enforce a lower threshold on the weights (e.g. 2×ǫmachine)
and to set the small weights either to the threshold value or to 0. The
latter option can substantially speed up computation, especially for
large data sets.

• compute zi as

zi =

{
min(1/P̂i, zmax) y = 1

min(1/(1P̂i), zmax) y = −1
(54)

Cost φ e−yf y ln p(f) + (1− y) ln(1− p(f))
p(f) = ef/(ef + e−f)

steepest Discrete –
+ line search Real

Newton Gentle Logit

3.1.2 AnyBoost and any cost φ

Arbitrary cost: Lφ(F) =
∑N

i=1 φ(yiF (xi))

Learning algorithm: finds f ∼ −∇∑N
i=1 φ(yiF (xi))

AnyBoost Algorithm

Initialize f0 = b0

for k = 1, . . .M
learn bk

find βk by line search
fk = fk−1 + βkbk

Properties

18

• can use better cost
• local optima

3.2 How to choose a cost φ?

Can we analyze which cost functions φ are “better”? Can we offer some guar-
antees in terms of generalization bounds? The answers are in [Bartlett et al., 2006]
Bartlett, Jodan & McAuliffe,”Convextity, classification and risk bounds”,
2005 (BJM).

We will restrict ourselves to convex, almost everywhere differentiable costs
φ that are upper bounds of the 0-1 cost.

Let p = P [Y = 1|X], z = f(X). Then the expected cost of classification at
X is

Cp(z) = pφ(z) + (1− p)φ(−z) (55)

and the optimal cost is

H(p) = min bzCp(z) attained for f∗ =
1

2
ln

p

1− p (56)

Let H− denote the smallest cost for a misclassification

H−(p) = inf
sgnz=−sgn(2p−1)

Cp(z) (57)

Intuitively, we are minimizing φ instead of the “true” misclassification cost,
and we want to measure how much we can be off when doing this. The
following results say that we can bound the “true” loss L01(f) in terms of
the φ-loss Lφ.

We say φ is classification calibrated if H−(p) > H(p) for all p 6= 1/2.
For φ convex, we have that φ is classification calibrated iff φ differentiable
at 0 and φ′(0) < 0.

Proposition 4 (Theorem 4 in BJM) If φ is classification calibrated and
convex, then for any classifier F

ψ(L01(f)− L∗
01) ≤ Lφ(f)− L∗

φ (58)

where L∗
φ, L

∗
01 represent respectively the optimal φ-loss and optimal classifi-

cation loss on the given data distribution and ψ is

ψ(θ) = φ(0) −H(
1 + θ

2
) (59)

19

Loss function φ(z) Transform function ψ(θ)

exponential: e−z 1−
√

1− θ2

truncated quadratic: (max(1− z, 0))2 θ2

hinge: max(1− z, 0) |θ|
In BJM there are also more general theorems that do not assume φ is convex.

Furthermore, a convergence rate bound is given, which depends on: the noise
in the labels, a complexity parameter of the function class B, the curvature
of φ. By optimizing this expression w.r.t to B and φ one can theoretically
choose the loss function and/or the base classifier.

3.3 A generic loss bound

TBW

3.4 When to stop boosting?

The idea of Cross-Validation (CV) is to use an idependent sample from
PXY , denoted D′ and called the validation set to estimate the expected
loss L01(f). When overfitting starts, L01(f

k) will start increasing with k.
Boosting is the stopped at the value M that minimizes L̂01(b

k;D′) (denoted
Lcv below to simplify notation)

AdaBoost with Cross-Validation

Given Training set D of size N , validation set D of size N ′, base
classifier B
Initialize

1. while LCV decreases (but for at least 1 step)

• do a round of boosting on D
• for i′ = 1 : N ′ compute f(xi′)← f(xi′) + βkbk(xi′)
• compute RCV = 1

N ′

∑

i′ 1[yi′f(xi′)<0]

3.5 Other practical aspects

Overfitting in noise When the classes overlap much (many examples in D
hard/impossible to classify correctly) boosting algorithms tend to focus too

20

much on the hard examples, at the expense of overall classification accuracy.
Observe also the cost function(s) in figure 1.

Choice of features Often times, the base class B consists of function of the
form f(x) = xj − a, which perform a split on coordinate xj at point xj = a.
They have the advantage that they can be learned and evaluated extremely
fast. One can also augment the coordinate vector x with functions of the
coordinates (e.g. x → [x1 . . . xd x1x2 x1x3 . . .]) essentially creating a large
set of features, which corresponds to finite but very large B. In such a
situation, the number of features d can easily be larger than M the number
of b’s in the final f . Thus, boosting will be implicitly performing a feature
selection task.

4 Extensions of boosting

4.1 Multiplicative updates algorithms

Boosting also can be seen as part of a larger class of multiplicative updates
algorithms. This area is under intense development, especially for algorithms
at the frontier between game theory and computer science. For a general and
clear discussion of these algorithms see [Arora et al.,] “The Multiplicative
updates method” by Arora, Hazan and Kale.

Here is a very simple example: We have “experts” b1:M who can predict the
stock market (with some error). The predictions in this problem are binary,
i.e {up, down} We will also try to predict the stock market, by combining
their predictions in the function f =

∑k wkbk. The following algorithm
learns f by optimizing the weights wk.

Weighted Majority Algorithm

Initialize w0
i ← 1

for t = 1, 2, . . .
1. wt

i ← wt−1
i (1− ǫ) if expert i makes a mistake at time t

2. predict the outcome that agrees with the weighted majority of the
experts

It can be shown that the number of mistakes mt of f up to time t is bounded

21

by

mt ≤ 2 lnM

ǫ
+ 2(1 + ǫ)mt

j (60)

where mt
j is the number of mistakes of any expert j. Thus, asymptotically,

the number of mistakes of the algorithm is about twice those of the best
expert.

For a more general algorithm, that includes the above case, Arora & al prove
that to achieve a tolerance δ w.r.t to the optimal average cost, one needs to
make O(lnM/δ2) updates.

Another example that falls under the same framework is the Covering (Ad-
missibility) Linear Program problem with an oracle. The task is to find a
point x ∈ R

n satisfying M linear constraints given by

Ax ≥ b, A ∈ R
M×n, b ∈ R

M (61)

We have an oracle which, given a single constraint cTx ≥ d returns a point
x satisfying it whenever the constraint is feasible. It is assumed that the
oracle’s responses x satisfy Aix− bi ∈ [−ρ, ρ] for all rows i of A and that ρ
is known.

We run the multiplicative updates algorithm for T steps, where T ∝ ρ2 as
follows

Linear Program with Oracle parameters ρ, δ
Initialize wi = 1/M the weight of each constraint
for t = 1, 2, . . . T

1. Call Oracle with c =
∑

iwiAi, d =
∑

iwib
i and obtain xt

2. Penalty for equation i is rt
i = Aix

t − bi
3. Update weights by

wt+1
i ← wt

i(1− ǫ · sign rt
i)

|rt
i | (62)

with ǫ = δ
4ρ

and renormalize the weights.

Output x =
∑

t x
t/T

In [Arora et al.,] it is shown (Exercise: prove it based on the initial assump-
tions!) that (1) if Oracle returns a feasible xt at all steps, then x satisfies
Aix − b + δ ≥ 0 i.e the system is satisfied with tolerance δ; (2) if Oracle

declares infeasibility in some step, then the program is infeasible.

22

4.2 Boosting for multiclass and ranking

Multilabel classification is a setting where an example x can have mul-
tiple labels, represented by the set Y (x), from a given finite set Y, with
|Y| = L. One remaps the set of labels to the binary vector y ∈ {±1}L by

yl =

{
1 if l ∈ Y (x)
−1 if l 6∈ Y (x)

for l ∈ Y (63)

There is a weight wil for each example i and each label l ∈ Y

AdaBoost.MH []
Input M , labeled training set D

Initialize f = 0
w1

il = 1
NL

for k = 1, 2, . . . M
learn classifier bkl on D with weights wk

il predict label yl, l = 1 : L

evaluate error εk =
∑N

i=1

∑L
l=1 w

k
ily

i
lb

k
l (xi)

calculate βk = 1
2 ln 1−εk

1+εk

compute new weights wk+1
il = 1

Zkw
k
ile

−yi
l
bk
l
(xi) and normalize them to sum to 1

Output f(x) = [fl(x)]l∈Y = [
∑M

k=1 b
k
l (x)]l∈Y

The error εk is the sum of the errors on each label, in other words the
Hamming distance between the true vector yi and the vector [bkl (x

i)]l. This
is symbolyzed by the “H” in the name of the algorithm.

A variant of AdaBoost.MH that uses Error Correcting Output Codes
(ECOC) for multiclass single label classification is called AdaBoost.MO

[].

Ranking. Often ranking is considered in a broader sense, that includes

• ranking proper: finding a total ordering of the items x ∈ X in a given
set. This is done for example by search engines when they present web
pages ranked by their relevance to the query.

• rating: giving each x a label in a finite set Y. This is the “Netflix”
task, where each movie is rated from 1 to 5 stars.

• retrieval: each item is labeled either 1 (relevant) or 0 (irrelevant).
This is the first task some search engines perform when they are given
a query. Note that this task looks like a classification, but it differs in
the fact that the x items are not sampled iid.

23

Underlying assumptions (hidden in the algorithm below)

• The items x are as usual represented by feature vectors in R
n. Thus

x will represent in the same time a web page and the set of features
describing this web page, which will be used to infer the page label.

• Typically, one gets a training set of many “queries”, each with an
associated list of “documents” x. For the purpose of ranking, only
pairs x, x′ which correspond to the same query and have different ranks
must be considered. These pairs are called crucial pairs. Thus, an
algorithm that learns how to rank data will look at pairs of x’s and the
differences in their labels in the same way as a classification algorithm
looks at single x vectors and their ±1 labels.
Moreover, the algorithm will ignore the grouping by query. This will
be OK because the algorithm will only see pairs that belong to the
same query.

• The ranking is given by a real valued function f(x). In the ranking
case, the items x are ordered by their values; in the second case f is
constrained to take discrete values; in the third case sign f provides
the label.

Below is an example of a boosting algorithm for ranking under these paradigms.

RankBoost Algorithm

Initialize w1
x,x′ ∝ 1 for all (x, x′) crucial pairs in the data. It is assumed

that x ≻ x′, i.e. that x is ranked after x′.
for k = 1, 2, . . . K

1. train weak classifier bk on the crucial pairs weighted by wk
xx′

2. calculate rk =
∑

(x,x′)w
k
xx′(bk(x)− bk(x′)); this is the average margin

3. calculate βk = 1
2 ln 1+rk

1−rk (see also notes below)

4. update weights wk+1 = 1
Zk

∑

(x,x′)w
k
xx′eβ

k(bk(x)−bk(x′)) with Zk a nor-
malization constant

Output f(x) =
∑K

k=1 β
kbk(x)

Remark: there is more than one way to choose βk, and they are analogous
to the methods described on pages 11–12. The one in the algorithm above
corresponds to the case b(x) ∈ [0, 1]. For b(x)k ∈ {0, 1} a formula similar to
that for DiscreteAdaBoost is obtained. For bk(x) ∈ R it is recommended
to minimize Zk w.r.t β in order to obtain the best value. [Exercise: why?]

24

5 Conclusions

• There are many different methods for averaging classifiers. They have
different effects and should be applied in different situations.

• Rule of thumb: Averaging is particularly recommended when B is not
the “true” classifier family for the given problem (we don’t expect a
single classifier to perform well enough).

• Interpretability of the result of learning is generally lost by averaging.

References

[Arora et al.,] Arora, S., Hazan, E., and Kale, S. The multiplicative weights
update method: a meta algorithm and applications.

[Bartlett et al., 2006] Bartlett, P. L., Jordan, M. I., and McAuliffe, J. D.
(2006). Convexity, classification, and risk bounds. Journal of the Ameri-
can Statistical Association, 101(473):138–156.

[Bartlett and Traskin, 2007] Bartlett, P. L. and Traskin, M. (2007). Ad-
aboost is consistent. Journal of Machine Learning Research, 8:2347–2368.

[Bauer and Kohavi, 1999] Bauer, E. and Kohavi, R. (1999). An empiri-
cal comparison of voting classification algorithms: bagging, boosting and
variants. MAchine learning, 36:105–142.

[Breiman, 1994] Breiman, L. (1994). Bagging predictors. Technical report
421, Department of Statistics, University of California, Berkeley.

[Dietterich, 1999] Dietterich, T. G. (1999). An experimental comaprison
of three methods for constructing ensembles of decision trees: bagging,
boosting and randomization. Machine learning, pages 1–22.

[Dietterich, 2000] Dietterich, T. G. (2000). Ensemble methods in machine
learning. In Roli, F., editor, First International Workshop on Multi-
ple Classifier Systems, Lecture Notes in Computer Science, New York.
Springer Verlag.

[Freund and Schapire, 1997] Freund, Y. and Schapire, R. E. (1997). A
decision-theoretic generalization of on-line learning and an application
to boosting. Jounal of computer and system sciences, 55(1):119–139.

25

[Friedman et al., 1999] Friedman, J., Hastie, T., and Tibshani, R. (1999).
Additive logistic regression: a statistical view of boosting. In Advances in
Neural Information Processing systems (NIPS), number 11. MIT Press.
(see also technical report at http://www-stat.stanford.edu/ jhf/.

[Mason et al., 1999] Mason, L., Baxter, J., Bartlett, P., and Frean, M.
(1999). Boosting algorithms as gradient descent in function space. Tech-
nical report RSISE, Australian national university.

[Mason et al., 2000] Mason, L., Baxter, J., Bartlett, P., and Frean, M.
(2000). Boosting algorithms as gradient descent. In Advances in Neu-
ral Information Processing systems (NIPS), number 12. MIT Press. (to
appear).

[Schapire et al., 1998] Schapire, R. E., Freund, Y., Bartlett, P. L., and Lee,
W. S. (1998). Boosting the margin: a new explanation for the effectiveness
of voting methods. Annals of statistics, 26(5):1651–1686.

[Schapire and Singer, 1998] Schapire, R. E. and Singer, Y. (1998). Im-
proved boosting algorithms using confidence-rated predictions. In Pro-
ceedings of the Eleventh Annual conference on computational learning
theory (COLT), pages 80–91.

26

