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Convex sets
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Reading: BV 2.1–2.3, 2.5. These notes are meant to guide the reading of
BV, not to replace it.

• line segment {tx2 + (1 − t)x2 with t ∈ [0, 1]}
• affine combination

∑

i tixi with
∑

i ti = 1
Can also be written as x1 +

∑

i=2:k ti(xi − x1) with any real t2:k
• convex combination

∑

i tixi with
∑

i ti = 1 and ti ≥ 0
• conic combination

∑

i tixi with ti ≥ 0
• cone C: if x ∈ C then tx ∈ C for all t > 0
• convex set, affine set, cone, convex cone
• convex hull, affine hull, conic hull

Extreme points

Krein-Milman Theorem A bounded closed convex set (in R
d) is the closed

convex hull of its extreme points. [This theorem extends to spaces of func-
tions too.]

Relative interior, (relative) boundary, (relative) closure

Examples of Convex sets

1. hyperplane aT (x − x0) = 0
2. half-space aT x − b ≥ 0
3. ball, ellipsoid
4. second-order cone {(x, t) | t ≥ 0, ||x||2 ≤ t, x ∈ R

d}
5. polyhedron = (bounded) intersection of m half-spaces
6. simplex = convex hull of k + 1 affinely independent points (i.e x1 −

xk+1, x2 − xk+1, . . . are linearly independent)
7. all symmetric matrices are an affine set and a convex set (unbounded)
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8. all positive definite matrices are a convex cone
9. all stochastic matrices are a convex set

10. all doubly stochastic matrices are a convex set (what are its extreme
points?)

Convex sets in probability

1. the parameter space of all normal distributions over R
d is a convex set

2. the (parameter) space of all discrete distributions over some countable
space X

3. all distributions with a fixed set of marginals
4. the conditional distributions of a discrete joint

Let X, Y ∈ ΩX × ΩY with ΩX | = m, |ΩY | = n be two discrete random
variables, and let Θ be the set of all probability distributions over
ΩX × ΩY .
That is, we define Pθ(X = i, Y = j) = θij ; then Θ = {θ = [θij ]ij ∈
[0, 1]m×n,

∑

ij θij = 1}. Imagine θ to be rearranged as a vector of
dimension mn:

vec(θ) = [ θ11 θ12 . . . θ21 θ22 . . . θmn ]T (1)

We use the linear-fractional (or projective) function (BV page 41)

f(z) =
Az + b

cT z + d
domf = {z|cT z + d > 0} (2)

which maps a convex set into a convex set. Let now z = vec(θ), b =
0, d = 0,

Aij,i′j′ =

{

1 if j = j′ = j0, i
′ = i

0 otherwise
cij =

{

1 if j = j0

0 otherwise
(3)

In other words, cT vec(θ) =
∑

i θij0 = Pθ[Y = j0], and row ij of A,
multiplied by θ gives

∑

i′,j′ Aij,i′j′θi′j′ = θi,j0 = Pθ[X = i, Y = j0].
Hence, f(θ) = Pθ[X = i|Y = j0] for any θ ∈ Θ with Pθ(Y = j0) > 0.
This subset of Θ is also convex (but not closed), therefore we conclude
that the set of all conditional probabilities given a fixed Y is a convex
set.
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5. all distributions over R with E[X] in a convex set (in particular E[X]
fixed, E[X] ≥ a)

Convex spaces of functions

1. polynomials of degree n; all polynomials
2. {g | g ≥ f0} with f0 fixed
3. {g |

∫

|g|p < a} with p ≥ 1, a ∈ (0,∞) (the Lp balls)
4. all convex functions on set X

1 Separating and supporting hyperplanes

Theorem C, D convex sets, C ∩ D = ∅. Then, there exist a hyperplane
aT x − b = 0 that separates C, D, i.e so that aT x ≤ b for any x ∈ C and
aT x ≥ b for any x ∈ D.

Strict separation = one of the inequalities is strict

Proposition C convex closed, x0 6∈ C. Then x0 can be strictly separated
from C.

Corollary: Theorem of alternatives (BV Example 2.21) The system of
linear inequalities Ax ≺ b, with A ∈ R

m×n is infeasible iff the convex sets

C = {b − Ax|x ∈ R
n} and D = R

m
++ = {y ∈ R

m|y ≻ 0} (4)

do not intersect.
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