STAT 538 Lecture 5 Convex sets ©Marina Meilă mmp@stat.washington.edu

Reading: BV 2.1–2.3, 2.5. These notes are meant to guide the reading of BV, not to replace it.

- line segment $\{tx_2 + (1-t)x_2 \text{ with } t \in [0,1]\}$
- affine combination ∑_i t_ix_i with ∑_i t_i = 1 Can also be written as x₁ + ∑_{i=2:k} t_i(x_i x₁) with any real t_{2:k}
 convex combination ∑_i t_ix_i with ∑_i t_i = 1 and t_i ≥ 0
- conic combination $\sum_{i} t_i x_i$ with $t_i \ge 0$
- cone \mathcal{C} : if $x \in \mathcal{C}$ then $tx \in \mathcal{C}$ for all t > 0
- convex set, affine set, cone, convex cone
- convex hull, affine hull, conic hull

Extreme points

Krein-Milman Theorem A bounded closed convex set (in \mathbb{R}^d) is the closed convex hull of its extreme points. [This theorem extends to spaces of functions too.

Relative interior, (relative) boundary, (relative) closure

Examples of Convex sets

- 1. hyperplane $a^T(x-x_0) = 0$
- 2. half-space $a^T x b \ge 0$
- 3. ball, ellipsoid
- 4. second-order cone $\{(x,t) \mid t \ge 0, ||x||_2 \le t, x \in \mathbb{R}^d\}$
- 5. polyhedron = (bounded) intersection of m half-spaces
- 6. simplex = convex hull of k + 1 affinely independent points (i.e $x_1 x_1 x_1 x_1 x_2 x_2 x_1 x_2 x$ $x_{k+1}, x_2 - x_{k+1}, \ldots$ are linearly independent)
- 7. all symmetric matrices are an affine set and a convex set (unbounded)

- 8. all positive definite matrices are a convex cone
- 9. all stochastic matrices are a convex set
- 10. all doubly stochastic matrices are a convex set (what are its extreme points?)

Convex sets in probability

- 1. the parameter space of all normal distributions over \mathbb{R}^d is a convex set
- 2. the (parameter) space of all discrete distributions over some countable space X
- 3. all distributions with a fixed set of marginals
- 4. the conditional distributions of a discrete joint

Let $X, Y \in \Omega_X \times \Omega_Y$ with $\Omega_X = m$, $|\Omega_Y| = n$ be two discrete random variables, and let Θ be the set of all probability distributions over $\Omega_X \times \Omega_Y$.

That is, we define $P_{\theta}(X = i, Y = j) = \theta_{ij}$; then $\Theta = \{\theta = [\theta_{ij}]_{ij} \in [0, 1]^{m \times n}, \sum_{ij} \theta_{ij} = 1\}$. Imagine θ to be rearranged as a vector of dimension mn:

$$\operatorname{vec}(\theta) = \left[\theta_{11} \,\theta_{12} \dots \,\theta_{21} \,\theta_{22} \,\dots \,\theta_{mn}\right]^T \tag{1}$$

We use the *linear-fractional (or projective) function* (BV page 41)

$$f(z) = \frac{Az+b}{c^T z+d} \quad \text{dom}f = \{z|c^T z+d > 0\}$$
(2)

which maps a convex set into a convex set. Let now $z = \text{vec}(\theta), b = 0, d = 0,$

$$A_{ij,i'j'} = \begin{cases} 1 & \text{if } j = j' = j_0, i' = i \\ 0 & \text{otherwise} \end{cases} \qquad c_{ij} = \begin{cases} 1 & \text{if } j = j_0 \\ 0 & \text{otherwise} \end{cases}$$
(3)

In other words, $c^T \operatorname{vec}(\theta) = \sum_i \theta_{ij_0} = P_{\theta}[Y = j_0]$, and row ij of A, multiplied by θ gives $\sum_{i',j'} A_{ij,i'j'} \theta_{i'j'} = \theta_{i,j_0} = P_{\theta}[X = i, Y = j_0]$. Hence, $f(\theta) = P_{\theta}[X = i|Y = j_0]$ for any $\theta \in \Theta$ with $P_{\theta}(Y = j_0) > 0$. This subset of Θ is also convex (but not closed), therefore we conclude that the set of all conditional probabilities given a fixed Y is a convex set. 5. all distributions over \mathbb{R} with E[X] in a convex set (in particular E[X] fixed, $E[X] \ge a$)

Convex spaces of functions

- 1. polynomials of degree n; all polynomials
- 2. $\{g \mid g \ge f_0\}$ with f_0 fixed
- 3. $\{g \mid \int |g|^p < a\}$ with $p \ge 1$, $a \in (0, \infty)$ (the L_p balls)
- 4. all convex functions on set X

1 Separating and supporting hyperplanes

Theorem C, D convex sets, $C \cap D = \emptyset$. Then, there exist a hyperplane $a^T x - b = 0$ that separates C, D, i.e so that $a^T x \leq b$ for any $x \in C$ and $a^T x \geq b$ for any $x \in D$.

Strict separation = one of the inequalities is strict

Proposition C convex closed, $x_0 \notin C$. Then x_0 can be strictly separated from C.

Corollary: Theorem of alternatives (BV Example 2.21) The system of linear inequalities $Ax \prec b$, with $A \in \mathbb{R}^{m \times n}$ is infeasible iff the convex sets

$$C = \{b - Ax | x \in \mathbb{R}^n\} \text{ and } D = \mathbb{R}^m_{++} = \{y \in \mathbb{R}^m | y \succ 0\}$$
(4)

do not intersect.