STAT 538 Lecture 5
Convex sets
(©Marina Meila

mmpQstat.washington.edu

Reading: BV 2.1-2.3, 2.5. These notes are meant to guide the reading of
BV, not to replace it.

line segment {txy + (1 — t)xo with t € [0, 1]}

e affine combination ) . t;z; with ). t; =1

Can also be written as x1 + ), o, ti(z; — 1) with any real to,
convex combination ) . t;x; with ) . t; =1 and ¢; >0

conic combination ) . ¢;x; with ¢; > 0

cone C: if x € Cthentr € Cforallt >0

convex set, affine set, cone, convex cone

convex hull, affine hull, conic hull

Extreme points

Krein-Milman Theorem A bounded closed convex set (in R?) is the closed
convex hull of its extreme points. [This theorem extends to spaces of func-
tions too.]

Relative interior, (relative) boundary, (relative) closure

Examples of Convex sets

SN el

hyperplane a® (z — zo) =0

half-space a’z —b >0

ball, ellipsoid

second-order cone {(xz,t) |t >0, ||z|[s <t, x € RY}

polyhedron = (bounded) intersection of m half-spaces

simplex = convex hull of k£ + 1 affinely independent points (i.e x; —
Tjy1, Ta — Tgi1, - .. are linearly independent)

all symmetric matrices are an affine set and a convex set (unbounded)



8. all positive definite matrices are a convex cone

all stochastic matrices are a convex set

10. all doubly stochastic matrices are a convex set (what are its extreme
points?)

©

Convex sets in probability

1. the parameter space of all normal distributions over R is a convex set

2. the (parameter) space of all discrete distributions over some countable
space X

3. all distributions with a fixed set of marginals

4. the conditional distributions of a discrete joint
Let X,Y € Qx x Qy with Qx| =m, |Qy| = n be two discrete random
variables, and let © be the set of all probability distributions over

QX X Qy.
That is, we define Py(X = i,Y = j) = 6,;; then © = {0 = [0;;];; €
[0, 1], 326 = 1}, Imagine 0 to be rearranged as a vector of

dimension mn:
VeC<¢9) = [911 912 Ce (921 (922 Ce Hmn ]T (1)
We use the linear-fractional (or projective) function (BV page 41)

Az +b

T
= 2
T d domf = {z|¢"z+d > 0} (2)

fz) =
which maps a convex set into a convex set. Let now z = vec(f), b =

0,d =0,

1 =g =i =i 1=,
Ay = { 0 otherwise Cij = 0 otherwise (3)

In other words, c’vec() = >, 0i;, = Po[Y = jo], and row ij of A,
multlphed by 0 gives Zi’,j’ Al’j,i’j’ei/j/ = «91-7]'0 = PQ[X = ’i, Y = jo]
Hence, f(0) = Py[X = i|Y = jo] for any 0 € © with Pp(Y = jy) > 0.
This subset of © is also convex (but not closed), therefore we conclude
that the set of all conditional probabilities given a fixed Y is a convex
set.



5. all distributions over R with E[X] in a convex set (in particular E[X]
fixed, E[X] > a)

Convex spaces of functions

1. polynomials of degree n; all polynomials

2. {g9lg > fo} with fo fixed

3. {9] [lg|P < a} with p > 1, a € (0,00) (the L, balls)
4. all convex functions on set X

1 Separating and supporting hyperplanes

Theorem C, D convex sets, C N D = (). Then, there exist a hyperplane
a’z — b = 0 that separates C, D, i.e so that a’z < b for any z € C and
a’z > b for any x € D.

Strict separation = one of the inequalities is strict

Proposition C' convex closed, o € C'. Then xy can be strictly separated
from C.

Corollary: Theorem of alternatives (BV Example 2.21) The system of
linear inequalities Ax < b, with A € R™*" is infeasible iff the convex sets

C ={b-—AzlzreR"} and D = R}, = {yecR"jy>=0} (4)

do not intersect.



