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mmp@stat.washington.edu

Reading: BV 3.1–3.3. These notes are supplements to the reading.

1 Additional examples of convex functions

(All functions f, g below are assumed to be convex.)

Generic functions

• h(x, y) = f(x)g(y) is convex.
Proof

∇2h =

[

∇2f 0
0 ∇2g

]

Functions from statistics

• The normalization constant of an exponential family Z(θ)
Proof e−θx is convex as a function of θ ∈ R for any x; e−

P

i
θixi is also

convex in [θ1, . . . θn] as a product of convex functions of different vari-
ables. Then Z(θ) =

∑

x e−θT x is convex as a sum of convex functions.
• log Z(θ) is convex

Proof The proof is statistical. Essentially, one can show that

Eθ[x] =
∑

x

xp(x) = −∇ ln Z(θ) V arθ(x) =
∑

x

xxT p(x) = ∇2 ln Z(θ)

The convexity follows from the positive-definiteness of the variance.
For first equality:

∑

x

xi

e−
P

i
θixi

Z
=
∑

x

∂e−
P

i θixi

∂θi

Z
= −

∂Z
∂θi

Z
= −

∂ ln Z

∂θi

(1)
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For the second, we write the element i, j of the co-variance matrix

V ar(X)ij =
∑

x

xixj

e−
P

l
θlxl

Z
−

(

∑

x

xi

e−
P

l
θlxl

Z

)(

∑

x′

x′

j

e−
P

l
θlx

′

l

Z

)

(2)

=
∑

x

−xi

Z2

[

−xje
−xT θZ − (e−xT θ)

(

∑

x′

−x′

je
−xT θ

)]

(3)

=
∑

x

∂

∂xj

(

−xie
−xT θ

Z

)

=
∂

∂xj

∂ ln Z

∂xj

(4)

• Any marginal of a discrete distribution.
Let X, Y ∈ ΩX × ΩY with ΩX | = m, |ΩY | = n be two discrete random
variables, and let Θ be the set of all probability distributions over
ΩX × ΩY . That is, we define Pθ(X = i, Y = j) = θij ; then Θ = {θ =
[θij ]ij ∈ [0, 1]m×n,

∑

ij θij = 1} The marginal PX(i) =
∑

j θij is a linear
function of the entries of θ, therefore it is convex.

2 Stricly convex and strongly convex func-

tions

A function is strictly convex if Jensen’s inequality is strict whenever t ∈
(0, 1), i.e.

tf(x) + (1 − t)f(x′) > f(tx + (1 − t)x′) for all t ∈ (0, 1) (5)

The concept of subgradient is a generalization of the gradient for functions
which are not differentiables. A subgradient of a convex function f at point
x is any vector g ∈ R

n so that

f(x′) ≥ f(x) + gT (x′ − x) for allx′ ∈ domf (6)

In other words, g is a subgradient iff it is the normal of a supporting hyper-
plane of the epigraph f at x. It follows immediately that aa convex function
admits a subgradient at any point in its domain. [Exercise: Show that
∂f(x) = {g ∈ R

n | g subgradient of f atx} is a convex set.] If ∇f(x) exists,
then it is the unique subgradient at x.
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A function f is µ-strongly convex iff

f(x′) ≥ f(x)+gT (x′−x)+
µ

2
||x′−x||2 for allx, x′ ∈ domf and all g ∈ ∂f(x)

(7)
The notion of strong convexity is a generalization of the condition

∇2f(x) ≻ µI (8)

from doubly differentiable functions to all convex functions. [Exercise: Show
that (8) implies (7) when the Hessian is defined everywhere.] Strong convex-
ity implies strict convexity, but the converse is not true. For example, the
function f(x) = 1/x, x ∈ (0,∞) is strictly convex but not strongly convex.
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