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1 Conjugate Function

The convex conjugate of the function f is the function

f ∗(y) = sup
x

[yTx− f(x)] (1)

The domain of f ∗ is the set of y’s for which the supremum above is finite.
Note that f ∗ is always convex in y, as a supremum of linear functions in y.

Let g(x, y) = yTx− f(x). If f is differentiable and convex, then supx g(x, y)
can be calculated by taking the derivative w.r.t x.

∇xg(x, y) = y −∇f(x) = 0 (2)

y = ∇f(x) ⇒ solution x∗ (3)

If f is convex, then x∗ is a maximum. If the solution above is unique, then
we say the pair (x∗, y) = (x∗,∇f(x∗)) is a Legendre conjugate pair. If
the solution is unique for every y, then we can write

f ∗(y) + f(x∗) = yTx∗ = ∇f(x∗)Tx∗ (4)

Because at x∗ is the supremum of g(x, y), it follows that for every x in the
domain of f the r.h.s is no larger than the l.h.s, that is

f ∗(y) + f(x) ≥ yTx for allx, y (5)

This is called the Fenchel-Legendre inequality.

Proposition If f is convex, and epi f is closed, then f ∗∗ = f . In this case,
we call f, f ∗ a Legendre conjugate pair of functions.
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2 Bregman divergences

Let φ be a strictly convex and differentiable function. The Bregman di-
vergence between x, y ∈ domφ is

dφ(y, x) = φ(y) − φ(x) −∇φ(x)T (y − x) (6)

The geometric significance of the Bregman divergence is illustrated by the
following picture. The Bregman divergence is the vertical distance at y be-
tween the graph of f and the tangent to the graph of f in x.

x y

 dφ( y, x )

Examples

φ dφ
||x||2 ||x− y||2 squared Euclidean distance
x ln x y ln y

x
− (y − x)

−H(p) =
∑

j pj ln pj KL(q||p) =
∑

j qj ln
qj
pj

Kullbach − Leibler divergence
∑
pj =

∑
qj = 1 btw. distributions p, q

Properties of the Bregman divergence

1. dφ(y, x) ≥ 0 (because the tangent to the epigraph is always below the
graph)

2. convex in y (easy to verify)
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3. linear in φ (easy to verify)

4. invariant to addition of affine function dφ+bTx+c = dφ (easy to verify)

5. Linear separation { x | dφ(x, u) = dφ(x, v) } is a hyperplane.
Proof

dφ(x, u) = dφ(x, v) (7)

φ(x) − φ(u) −∇φ(u)T (x− u) = φ(x) − φ(v) −∇φ(v)T (x− v)(8)

[∇φ(u) −∇φ(v)]Tx− [∇φ(u)Tu−∇φ(v)Tv − φ(u) + φ(v)] = 0 (9)

The last equation defines a hyperplane.

6. Centering
minuEp[dφ(X, u)] = Ep[dφ(X,µ)] where µp ≡ Ep[X] for any probability
distribution p over X
Proof Denote J(u) = Ep[dφ(X, u)]. Then,

J(u) − J(µ) (10)

=
∑

x

p(x)dφ(x, u) −
∑

x

p(x)dφ(x, µ) (11)

=
∑

x

p(x)[φ(x) − φ(u) −∇φ(u)T (x− u) − φ(x) + φ(µ) −∇φ(µ)T (x− µ)]

= φ(µ) − φ(u) −∇φ(u)T [
∑

x

p(x)x

︸ ︷︷ ︸

µ

−u] −∇φ(µ)T [
∑

x

p(x)x− µ)] (12)

= φ(µ) − φ(u) −∇φ(u)T [µ− u] (13)

= dφ(u, µ) ≥ 0 (14)

7. Conjugate duality Let ψ(θ) = φ∗(θ) be the conjugate of φ(µ). Then
dφ(µ1, µ2) = dψ(θ2, θ1)
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Proof

dφ(µ1, µ2) = φ(µ1) − φ(µ2) − (µ1 − µ2)
T ∇φ(µ2)

︸ ︷︷ ︸

θ2

(15)

= φ(µ1) − φ(µ2) − (µ1 − µ2)
T θ2 + µT1 θ1 − µT1 θ1 (16)

= [−µT1 θ1 + φ(µ1)] + [µT2 θ2 − φ(µ2)] − µT1 θ2 + µT1 θ1(17)

= −ψ(θ1) + ψ(θ2) − µT1
︸︷︷︸

∇ψ(θ1)T

(θ2 − θ1) (18)

= dψ(θ2, θ1) (19)

3 Exponential family models

A family of probability distributions that can be put in the form below is
called and exponential family model1.

pθ(x) =
1

Z(θ)
eθ

T x (20)

In the above, x ∈ R
n are the natural coordinates, θ ∈ R

n are the natural
parameters of the exponential family, and Z is the normalization constant.
We will find it useful to work with lnZ(θ) which is the partition function
or the cumulant function.

ψ(θ) = lnZ(θ) = ln
∑

x

eθ
Tx (21)

This function is always convex in θ as the composition of the convex increas-
ing function log

∑

i e
yi with the linear functions yi = xTi θ.

In the following we will assume (implictly) various regularity conditions, for
instance that the normalization constant is finite in a domain that contains
a convex, open set, and that the coordinates x are linearly independent
functions.

1The general form of an exponential family model is log p(x) =
θT f(x)−log Z(θ)

c(γ) +

log c
′(x, γ), with γ another parameter called nuisance parameter and c, c

′ some functions.
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Exponential family models comprise (multivariate) normal distributions, Markov
random fields (with positive distributions), binomial and multinomial models,
etc. They have many convenient properties, some of which are evident from
the definition above. For example, exponential family models are essentially
the only parametric models that have a finite number of sufficient statistics2;
they have conjugate priors; from the differential geometry p.o.v, exponen-
tial families repreent flat manifolds, i.e affine function spaces spanned by
the vectors θi. We will show some of these properties here.

Using (21) we can express the distribution p(x) as

pθ(x) = eθ
Tx−ψ(θ) (22)

3.1 Examples

TBW

3.2 Expectations, moments and covexity

1. Eθ[X] ≡ µ(θ) = ∇ψ(θ)

Proof

∇ψ(θ) =
∇θ

(
∑

x e
θT x

)

Z(θ)
(23)

=

∑

x xe
θT x

Z(θ)
(24)

=
∑

x

x
eθ

Tx

Z(θ)
(25)

=
∑

x

xp(x) = Eθ[X] (26)

2Distributions that are piecewise uniform may also have finite sufficient statistics. In
their case, the sufficient statistics are intervals in which the data lie.
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2. V arθ[X] = ∇2ψ(θ)

Proof

∇2ψ(θ) = ∇T
θ

[∑

x xe
θT x

Z(θ)

]

(27)

=
∑

x

{

xxT
eθ

T x

Z(θ)
+ xeθ

T x

[

−
∇TZ(θ)

Z2(θ)

]}

(28)

=







∑

x

xxT p(x) − xeθ
T x

[

−

∑

x′ x
′eθ

Tx′

Z2(θ)

]T





(29)

= Eθ[xx
T ] − Eθ[x](Eθ[x])

T = V arθX (30)

3. From Property 2, because the variance is always positive definite, we

conclude that ψ(θ) is convex .

4. ln pθ(x) = θTx− ψ(θ) is concave in θ and linear in x. Hence p is log-

concave in θ, and is a log-linear model in x.

5. From 4 we also expect that, (under mild regularity conditions) the Max-
imum Likelihood estimate (when it exists) to be unique, and computa-
tionally easy to find, as the unique local maximum of the log-likelihood.
Let us examine ML estimation closer. Assume we have an i.i.d sample
x1, x2, . . . xn. The likelihood of the sample is

pθ(x
1:n) =

n∏

i=1

eθ
T xi−ψ(θ) (31)

= eθ
T

Pn
i=1

xi−nψ(θ) (32)

= en[θT x̄−ψ(θ)] (33)

and the ML estimation equation is

max
θ
g(θ, x̄) = x̄T θ − ψ(θ) (34)

Comparing the above equation with (1) we find that

θML is Legendre conjugate with x̄ = (
∑n

i=1 x
i)/n and that the max
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log-likelihood (= log-likelihood at θML) φ(x̄) is the Legendre conjugate function of ψ(θ) .

Moreover, maximizing the likelihood is equivalent to solving the equa-
tions x̄ = ∇ψ(θ); but from Property 1 we know that ∇ψ(θ) = Eθ[X].
Hence, the ML equations for an exponential family model amount to
solving for θ in

Eθ[X] =

∑

i x
i

n
(35)

In other words, θML is the parameter value for which the model expec-
tation equals the sample mean of the data (=the expectation under the
empirical distribution). Example Normal distribution.

6. TBW
Returning to the general expression of the log-likelihood, for any θ, the
Legendre conjugate parameter µ is given by (3) µ = ∇θψ = Eθ[X]. In
other words, the conjugate pairs θ, µ represent the (parameter, mean
value) pairs. The dual parametrization of the model in terms of µ, φ(µ)
is called the Mean value parametrization.

The domain of φ(µ), i.e the set {Eθ[X]}θ is called the marginal poly-
tope of the exponential family. Examples Normal, binomial

7. The gradient of the log-likelihood w.r.t the parameters has the simple
formula

∇θ

1

N
ln pθ(x

1:N) = x̄−∇θψ(θ) = x̄− Eθ[x] (36)

Thus, when we fit the models by e.g gradient ascent, the direction of
ascent is the difference between the data expectations and the model
expectations.

Example: Generalized Linear Models (GLM)
A GLM is a regression where the “noise” distribution is in the expo-
nential family.

• y ∈ R, y ∼ Pθ with

Pθ(y) = eθy−lnψ(θ) (37)

• the parameter θ is a linear function of x ∈ R
d

θ = βTx (38)
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• We denote Eθ[y] = µ. The function g(µ) = θ that relates the mean
parameter to the natural parameter is called the link function.

The log-likelihood (w.r.t. β) is

l(β) = lnPθ(y|x) = θy − ψ(θ) where θ = βTx (39)

and the gradient w.r.t. β is therefore

∇βl = ∇θl∇β(β
Tx) = (y − µ)x (40)

This simple expression for the gradient is the generalization of the
gradient expression you obtained for the two layer neural network in
the homework. [Exercise: This means that the sigmoid function is the
inverse link function defined above. Find what is the link function that
corresponds to the neural network.]

8. ψ∗(µ) ≡ φ(µ) = −H(θ) . The dual of ψ is the negative entropy.

Proof

−H(θ) =
∑

x

pθ(x) ln pθ(x) (41)

=
∑

x

pθ(x)[θ
Tx− ψ(θ)] (42)

= θT
∑

x

pθ(x)x− ψ(θ) (43)

= θTµ(θ) − ψ(θ) = φ(µ) (44)

9. KL(θ1, θ2) = dψ(θ2, θ1) = dφ(µ1, µ2)

Proof We need to prove only one of the equalities, because the other
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follows from Property 7 of the Bregman divergence.

KL(θ1, θ2) =
∑

x

pθ1(x) ln
pθ1(x)

pθ2(x)
(45)

=
∑

x

pθ1(x)[θ
T
1 x− ψ(θ1) − θT2 x+ ψ(θ2)] (46)

= (θ1 − θ2)
T [

∑

x

pθ1(x)x]

︸ ︷︷ ︸

µ(θ1)=∇ψ(θ1)

−ψ(θ1) + ψ(θ2) (47)

= ψ(θ2) − ψ(θ1) + (θ1 − θ2)
T∇ψ(θ1) (48)

= dψ(θ2, θ1) (49)

10. Likelihood and KL divergence (see Lecture 8)
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