
STAT 538

Lecture 9

Support Vector Machines
c©Marina Meilă
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These notes supplement the reading from: C. Burges - “A tutorial on SVM
for pattern recognition”.

1 Linear SVM’s

1.1 Notation reminder and a VC bound

The data set: inputs xi ∈ R
n, i = 1, . . .N , labels yi ∈ {−1, +1}

Assumption: (x, y) ∼ P , i.i.d

Classifier: y = f(x, θ) for new points x; θ = the parameters

The classifier family: F = {f(., θ)}

Empirical loss L̂01(θ) = 1
2N

∑

i |y
i − sgnf(xi, θ)|

Average loss L01(θ) = 1
2

∫
|y − sgnf(x, θ)|dP (x, y)

VC bound: L01(θ) ≤ L̂01(θ) +
√

h[1+log(2N/h)]+log(4/δ)
N

w.p. > 1 − δ, where

h = VCdimF and δ < 1 the confidence
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1.2 Linear Maximum Margin Classifiers

The linear classifier: f(x, w, b) = wT x + b

1.2.1 The margin and the classification error

Theorem Let FD be the class of hyperplanes f(x) = wTx that are R away
from any data point in the training set D. Then,

V CdimFD ≤ 1 + min

(

N,
R2

D

R2

)

(1)

where RD is the radius of the smallest ball that encloses the dataset.

Theorem Let F = {sgn (wTx), ||w|| ≤ Λ, ||x|| ≤ R} and let ρ > 0 be any
“margin”. Then for any f ∈ F , w.p 1 − δ over training sets

R(f) ≤ ν +

√

c

N

(
R2Λ2

ρ2
ln N2 + ln

1

δ

)

(2)

where ν is the fraction of the training examples for which yiwTxi < ρ and c
is a universal constant.

1.2.2 Formulating the optimization problem

Problem: min 1
2
||w||2 s.t yi(wTxi + b) − 1 ≥ 0 for all i.
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Optimization with Lagrange multipliers αi ≥ 0.

minimize LP = 1
2
||w||2 −

∑

i αi[y
i(wTxi + b) − 1]

w =
∑

i αiy
ixi

∑

i αiy
i = 0

Dual optimization problem

maximize LD =
∑

i αi −
1
2

∑

i αiαjy
iyjx

iT xj s.t αi ≥ 0 for all i

Quadratic problem on convex domain: has unique minimum/maximum. At
the optimum, αi > 0 for constraints that are satisfied with equality, αi = 0
otherwise.

Support vector: xi such that αi > 0

The classifier w =
∑

i,αi>0 αiy
ixi, b = yi − wT xi for some support vector

1.3 Non-linearly separable problems

The C-SVM

minimize
1

2
||w||2 + C

∑

i

ξi (3)

s.t. yi(wTxi + b) ≥ 1 − ξi

ξi ≥ 0

In the above, ξi are the slack variables. Equivalent formulation:
minimize LP = 1

2
||w||2 + C

∑

i ξi −
∑

i αi[y
i(wTxi + b) − 1 + ξi] −

∑

i µiξi

s.t. αi ≥ 0, ξi ≥ 0, µi ≥ 0
Dual:

maximize
∑

i

αi −
1

2

∑

i

αiαjy
iyjx

iT xj (4)

s.t. C ≥ αi ≥ 0 for all i
∑

i

αiy
i = 0

⇒ two types of SV
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• αi < C data point xi is “on the margin” ⇔ yi(wTxi + b) = 1 (original
SV)

• αi = C data point xi cannot be classified with margin 1 (margin
error) ⇔ yi(wTxi + b) < 1

The ν-SVM

minimize
1

2
||w||2 − νρ +

1

N

∑

i

ξi (5)

s.t. yi(wT xi + b) ≥ ρ − ξi (6)

ξi ≥ 0 (7)

ρ ≥ 0 (8)

(9)

Equivalent formulation:
minimize LP = 1

2
||w||2−νρ+1

l

∑

i ξi−
∑

i αi[y
i(wTxi+b)−ρ+ξi]−

∑

i µiξi−δρ
s.t. αi ≥ 0, δ ≥ 0, µi ≥ 0

Dual:

maximize −
1

2

∑

i

αiαjy
iyjx

iT xj (10)

s.t.
1

N
≥ αi ≥ 0 for all i (11)

∑

i

αiy
i = 0 (12)

∑

i

αi ≥ ν (13)

(14)

Properties If ρ > 0 then:

• ν is an upper bound on #margin errors/N (if
∑

i αi = ν)

• ν is a lower bound on #support vectors/N

• ν-SVM leads to the same w, b as C-SVM with C = 1/ν
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A simple error bound

E[L01(f) |N − 1] ≤ E

[
#support vectors

N

]

(15)

where E[L01(f) |N ] denotes the average loss classification error of a SVM
trained on a sample of size N

2 Convex optimization and SVM

2.1 Convex optimization in a nutshell

A set D ⊆ R
n is convex iff for every two points x1, x2 ∈ D the line segment

defined by x = tx1 +(1−t)x2, t ∈ [0, 1] is also in D. A function f : D → R is
convex iff, for any x1, x2 ∈ D and for any t ∈ [0, 1] for which tx1+(1−t)x2 ∈
D the following inequality holds

f(tx1 + (1 − t)x2) ≤ tf(x1) + (1 − t)f(x2) (16)

If f is convex, then the set { x | f(x) ≤ c } is convex for any value of c. Convex
functions defined on convex sets have very interesting properties which have
engendered the field called convex optimization.

The optimization problem

minx f(x) (17)

s.t. fi(x) ≤ 0 for i = 1, . . . p

is a convex optimization problem if all the functions f, fi are convex.
Note that in this case the admissible domain D =

⋂

i{ x | fi(x) ≤ 0 } is a
convex set.

It is known that if D has a non empty interior then the convex optimization
problem has at most one optimum x∗. If D is also bounded, x∗ always exists.

Assuming that x∗ exists, there are two possible cases: (1) The uncon-
strained minimum of f lies in D. In this case, the optimum can be found
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Figure 1: (a) One constraint optimization. (b) Four constraint optimization.
At the optimum only constraints g1, g4 are active.

by solving the equations ∂f
∂x

= 0. (2) The unconstrained minimum of f lies
outside D. Figure 1 depicts what happens at the optimum x∗ in this case.

Assume there is only one constraint f1. The domain D is the inside of the
curve f1(x) = 0. The optimum x∗ is the point where a level curve f(x) = c
is tangent to f1 = 0 from the outside. In this point, the gradients of two
curves lie along the same line, pointing in opposite directions. Therefore, we
can write ∂f

∂x
= −α∂f1

∂x
. Equivalently, we have that at x∗, ∂f

∂x
+ α∂f1

∂x
= 0.

Note that this is a necessary but not a sufficient condition. The above set of
equations represents the Karush-Kuhn-Tucker optimality conditions
(KKT).

With more than one constraint, the KKT conditions are equivalent to re-
quiring that the gradient of f lies in the subspace spanned by the gradients
of the constraints.

∂f

∂x
= −

∑

i

αi
∂fi

∂x
with αi ≥ 0 for all i (18)

Note that if a certain constraint fi does not participate in the boundary of
D at x∗, i.e if the constraint is not active, the coefficient αi should be 0.
Equation (18) can be rewritten as

∂

∂x
[f(x) +

∑

i

αifi(x)

︸ ︷︷ ︸

h(x,α)

] = 0 for some αi ≥ 0 for i = 1, . . . p (19)
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The optimum x∗ has to satisfy the equation above. The new function L(x, α)
is the Lagrangean of the problem and the variables αi are called Lagrange
multipliers. The Lagrangean is convex in x and affine (i.e linear + con-
stant) in α.

The dual problem Define the function

g(α) = infx L(x, α) α = (αi)i, αi ≥ 0 (20)

In the above, the infimum is over all the values of x for which f, fi are defined,
not just D (but everything still holds if the infimum is only taken over D).
Two facts are important about g

• g(α) ≤ L(x, α) ≤ f(x) for any x ∈ D, α ≥ 0, i.e g is a lower bound for
f , and implicitly for the optimal value f(x∗), for any value of α ≥ 0.

• g(α) is concave (i.e −g(α) is convex).

We also can derive from (19) that if x∗ exists then for an appropriate value
α∗ we have

g(α∗) = L(x∗, α∗) = f(x∗) + 0 (21)

and therefore g(α∗) must be the unique maximum of g(α). The second term
in L above is zero because x∗ is on the boundary of D; hence for the active
constraints fi(x

∗) = 0 and for the inactive constraints α∗

i = 0. This surprising
relationship shows that by solving the dual problem

max g(α) (22)

s.t α ≥ 0

we can obtain the values α∗ that plugged into (18 will allow us to find the
solution x∗ to our original (primal) problem. The constraints of the dual are
simpler than the constraints of the primal. In practice, it is surprisingly often
possible to compute the function g(α) explicitly. Below we give a simple
example thereof. This is also the case of the SVM optimization problem,
which will be discussed in section 2.3.
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2.2 A simple optimization example

Take as an example the convex optimization problem

min
1

2
x2 s.t x + 1 ≤ 0 (23)

By inspection the solution is x∗ = −1.

Let us now apply to it the convex optimization machinery. We have

L(x, α) =
1

2
x2 + α(x + 1) (24)

defined for x ∈ R and α ≥ 0.

g(α) = infx

[
1

2
x2 + α(x + 1)

]

(25)

= infx

[
1

2
(x + α)2 −

1

2
α2 + α

]

(26)

= −
1

2
α2 + α (27)

=
1

2
α(2 − α) attained for x = −α (28)

The dual problem is

max
1

2
α(2 − α) s.t α ≥ 0 (29)

and its solution is α = 1 which, using equation (28) leads to x = −1.

From the KKT condition

∂L

∂x
= x + α = 0 (30)

we also obtain x∗ = −α∗ = −1.

Figure 2 depicts the function L. Note that L is convex in x (a parabola) and
that along the α axis the graph of L consists of lines. The areas of L that fall
outside the admissible domain x ≤ −1, α ≥ 0 are in flat (green) color. The
crossection L(x, α = 0) represents the plot of f . The constrained minimum
of f is at x = −1, the unconstrained one is at x = 0 outside the admissible
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Figure 2: The surface L(x, α) for the problem min 1
2
x2 s.t x + 1 ≤ 0.

domain. Note that g(α) = L(−α, α) is concave, and that in the admissible
domain it is always below the graph of f . The (red) dot is the optimum
(x∗, α∗), which represents a saddle point for h. The line L(x = −1, α) is
horizontal (because f1 = x + 1 = 0) and thus L(x∗, α∗) = L(x∗, ) = f(x∗).

2.3 The SVM solution by convex optimization

The SVM optimization problem

minw
1

2
||w||2 s.t. yi(wT xi + b) ≥ 1 for all i (31)

is a convex (quadratic) optimizaton problem where

f(w, b) =
1

2
||w||2 (32)

gi(w, b) = −yiwTxi + 1 − yib (33)

Hence,

h(w, b, α) =
1

2
||w||2 +

∑

i

αi[1 − yib − yixiT w] (34)
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Equating the partial derivatives of h w.r.t w, b with 0 we get

∂L

∂w
= w −

∑

i

αiy
ixi (35)

∂L

∂b
=

∑

i

αiy
i (36)

or, equivalently

w =
∑

i

αiy
ixi 0 =

∑

i

αiy
i (37)

Hence, the normal w to the optimal separating hyperplane is a linear combi-
nation of data points. Moreover, we know that only those αi corresponding
to active constraints will be non-zero. In the case of SVM, these represent
points that are classified with yi(wTxi + b) = 1. We call these points sup-
port points or support vectors. The solution of the SVM problem does
not depend on all the data points, it depends only on the support vectors
and therefore is sparse.

Computing the solution. SVM solvers use the dual problem to compute
the solution. Below we derive the dual for the SVM problem. g(α) is com-
puted explicitly by replacing equation (37) in (34). After a simple calculation
we obtain

g(α) =
l∑

i=1

αi −
1

2

l∑

i=1

l∑

j=1

yiyjx
iT xjαiαj (38)

or, in vector/matrix notation

g(α) = 1T α −
1

2
αT Gα (39)

where G = [Gij ]ij = [yiyjx
iT xj ]ij.

3 A simple SVM problem

Data: 4 vectors in the plane and their labels

x1 = (−2,−2) y1 = +1
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x2 = (−1, 1) y2 = +1

x3 = (1, 1) y3 = −1

x4 = (2,−2) y4 = −1

The Gramm matrix G = [xiT xj ]i,j=1:l

G =







8 0 −4 0
0 2 0 −4
−4 0 2 0
0 −4 0 8







The dual function to be maximized (subject to αi ≥ 0) is

g(α) =
∑

i

αi −
1

2

∑

i

αiαjy
iyjx

iT xj

= α1 + α2 + α3 + α4 − 4α2
1 − α2

2 − α2
3 − 4α2

4 − 4α1α3 − 4α2α4

= (2α1 + α3) − (2α1 + α3)
2 − α1

+(α2 + 2α4) − (α2 + 2α4)
2 − α4

The parts depending on α1, α3 and α2, α4 can be maximized separately, and
after some short calculations we obtain:

α1 = 0 α4 = 0

α2 =
1

2
α3 =

1

2

Hence, the support vectors are x2 and x3. From these, we obtain

w =
∑

i

αiy
ixi =

1

2
(x2 − x3) = (−1, 0)

b = y2 − wTx2 = 0

The results are depicted in the figure below:
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4 Non linearly separable data: the “kernel

trick”

We have seen so far how to construct a SVM classifier if the data are linearly
separable i.e if there exist w, b such that the hyperplane wT x+ b = 0 leaves
all the examples labeled +1 (called positive examples) on one side and all
the examples labeled −1 (the negative examples) on its other side. If the
data are not linearly separable, then no solution to the SVM optimization
problem exists. Here we shall see a way of constructing SVM’s that are non
linear in the sense that they separate the positive and negative example by
a (hyper)surface that is non-linear.

An old trick that allows us to use linear classifier on data that is not linearly
separable is the following:

1. Map the data to a higher dimensional space x → z = φ(x) ∈ H , with
dim H >> n.

2. Construct a linear classifier wTz + b for the data in H
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For example, the data {(x, y)} below:
x y z

-1 -1 1 -1 -1 1
-1 1 -1 -1 1 -1
1 -1 -1 1 -1 -1
1 1 1 1 1 1

are not linearly separable. We map them to 3 dimensions by z = φ(x) =
[x1 x2 x1x2]. Now it is easy to see that the classes can be separated by the
hypeplane z3 = 0 (which happens to be the maximum margin hyperplane).
Hence w = [001] (a vector in H) and b = 0 and the classification rule is
f(φ(x)) = wTφ(x) + b. If we express this rule as a function of the original x
we get f(x) = x1x2 which is a quadratic classifier.

In summary, by mapping the data to H by φ(x) and then using a linear
classifier, we are in fact implementing the non-linear classifier

f(x) = wT φ(x) + b = w1φ1(x) + w2φ2(x) + . . . + wmφm(x) + b (40)

Rephrasing the non-linear classification problem in SV language we obtain:

Problem: minimize ||w||2 s.t yi(wTφ(xi) + b) − 1 ≥ 0 for all i.

Note that the only difference from the linear case is that xi is now replaced
with φ(xi). The dual Lagrangean, which is the problem that is effectively
solved, is also similar to the original Lagrangean:

maximize LD =
∑

i αi −
1
2

∑

i αiαjy
iyjφ(xi)T φ(xj) s.t αi ≥ 0 for all i

How much harder has the optimization become now? Surprizingly, the opti-
mization problem is no harder than it was before! Note that the Lagrangean
has a linear term that depends only on α and a quadratic term that can be
written

ᾱT Gᾱ (41)

where ᾱ = [αiy
i]i=1:l and G = [Gij ]

l
i,j=1 is the Gram matrix

Gij = Gji = φ(xi)T φ(xj) formerly Gij = Gji = xitxj (42)

A few facts follow from this observation:
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1. The φ vectors enter the SVM optimization problem only trough the
Gram matrix, thus only as the scalar products φ(xi)T φ(xj). We denote
by K(x, x′) the function

K(x, x′) = K(x′, x) = φ(x)T φ(x′) (43)

K is called the kernel function. If K can be computed efficiently, then
the Gram matrix G can also be computed efficiently. This is exactly
what one does in practice: we choose φ implicitly by choosing a kernel
K. Hereby we also ensure that K can be computed efficiently.

2. Once G is obtained, the SVM optimization is independent of the dimen-
sion of x and of the dimension of z = φ(x). The complexity of the SVM
optimization depends only on l the number of examples. This means
that we can choose a very high dimensional φ without any penalty on
the optimization cost.

3. Classifying a new point x. As we know, the SVM classification rule is

f(x) = wTφ(x) + b =
l∑

i=1

αiy
iφ(xi)T φ(x) =

l∑

i=1

αiy
iK(xi, x) (44)

Hence, the classification rule is expressed in terms of the support vec-
tors and the kernel only. No operations other than scalar product are
performed in the high dimensional space H .

The above describes the celebrated kernel trick of the SVM literature.

5 Kernels

The previous section shows why SVMs are often called kernel machines. If
we choose a kernel, we have all the benefits of a mapping in high dimensions,
without ever carrying on any operations in that high dimensional space. The
most usual kernel functions are
K(x, x′) = (1 + xT x′)p the polynomial kernel of degree p

K(x, x′) = e−
||x−x

′||2

σ2 the Gaussian or radial basis function (RBF) kernel
it’s φ is ∞-dimensional

K(x, x′) = tanh(σxT x′ − β) the “neural network” kernel
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How do we verify that a symmetric function K is a valid kernel, i.e that there
is a mapping φ for which K is the scalar product? This is ensured by the
Mercer condition which is a positivity condition

∫

K(x, x′)g(x)g(x′)dxdx′ ≥ 0 for all g such that ||g(x)||L2
< ∞ (45)

6 Extensions to other problems

6.1 Multi-class SVM

For a problem with K possible classes, we construct K separating hyper-
planes wT

r x + br = 0.

minimize
1

2

K∑

r=1

||wr||
2 +

C

l

∑

i,r

ξi,r (46)

s.t. wT
yixi + byi ≥ wT

r xi + br + 1 − ξi,r for all i = 1 : l, r 6= yi(47)

ξi,r ≥ 0 (48)

6.2 One class SVM

This SVM finds the “support regions” of the data, by separating the data
from the origin by a hyperplane. It’s mostly used with the Gaussian kernel,
that projects the data on the unit sphere. The formulation below is identical
to the ν-SVM where all points have label 1.

minimize
1

2
||w||2 − νρ +

1

N

∑

i

ξi (49)

s.t. wTxi + b ≥ ρ − ξi (50)

ξi ≥ 0 (51)

ρ ≥ 0 (52)
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6.3 SV Regression

The idea is to construct a “tolerance interval” of ±ǫ around the regressor
f and to penalize data points for being outside this tolerance margin. In
words, we try to construct the smoothest function that goes within ǫ of the
data points.

minimize
1

2
||w||2 + C

∑

i

(ξ+
i + ξ−i ) (53)

s.t. ǫ + ξ+
i ≥ wTxi + b − yi ≥ −ǫ − ξ−i (54)

ξ±i ≥ 0 (55)

ρ ≥ 0 (56)

The above problem is a linear regression, but with the kernel trick we obtain
a kernel regressor of the form f(x) =

∑

i(α
−

i − α+
i )K(xi, x) + b
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