STAT 538 Final Exam Solutions
Friday March 5, 2010, 3:30-5:20

Problem 1 — Maxima of convex functions

1.1 Assume that z* is not an extreme point. Then there are xy,xo €
C, x1, x5 # x*, so that * = txy + (1 — t)xs for some ¢t € (0,1). Then,
fa®) < tf(@) + (1 =0)f(xa) < tf@)+(A-t)f(2") = f(z") (1)

We have arrived at a contradiction, hence z* must be an extreme point.

1.2 z* is not unique. Counterexample: f(z) = 2? —1, C = [-1,1]; f has
two maxima at 1 and —1.

1.3 x* is not isolated. Counterexample in R™: f(z) = ||z|]*—1, C = {||z]| <
1}. Every point of the boundary of the unit ball is a maximum of f, and an
extreme point of C.

Problem 2 — The rate of convergence of gradient descent
with line minimization

2.1
g = Vf=Qx (2)
fle—ag) = %wTQH%QgTQg—axTQg (3)
%f(fﬂ—ag) = ag’Qg—12"Qg = 0 (4)
. - TQg _ g'g (5)
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The latter equality follows because x = Q" g.
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xTQl’ - (xTQg>2 (6)
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The latter equality follows because x = Q™ 1g.
2.3 First, we get the eigenvalues of ):
' A‘_Z el =02 ea = g -4+ 9
It follows that Ay = m =€, \s = M =4 — ¢. Hence,
flz —ag) AmM 4e(4 —€)
@ S Oremy 7 =y
For small ¢, this rate is nearly 1, and convergence will be very slow.
Problem 3 — SVM with logarithmic penalty
(P) jmin  Ffwl*+ 307, In S
st. yi(wlz; +b) > 1 —~;, foralli (10)
vi > 0 foralli (11)

3.1 vy, are called slack variables. Their role is to measure the amount by
which the margin conditions (2) are violated in the solution. ; = 0 whenever
a point is classified with margin 1 or larger.

3.2,3.3

1
L(w,b,v,\,a) = §Hw||2 vi — yi(w xz—l—b
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It follows that 0 < a; +7; < 1. Denote K = [Kij]7 Kij = yiyjIZTZEj, G; =
o; + /\Z Then
1

1+el = 1

g\ @) = %ATKA—Zln(l—ﬁi)—man—Z)\mLZ)\iln(%—l)
_<Z)\iyixi> (Z&%%)-Z%ln(i‘—l) (17)
= ——/\TK/\ mlnz—ZA +Z{ In(1 — ;) +@1n—@8)

(2

1
— —5/\TK/\—m1n2—Z/\i+ZH(ﬂi) (19)

In the above H(/3;) denotes the entropy —F;In5; — (1 — ;) In(1 — ;).

3.4 It is easy to verify that g is concave: the term —AT K\ is a negative
quadratic, with K positive definite, the second and third terms are constant,
respectively linear, and the terms H([3;) are entropies and therefore concave.
The domain of the dual objective is \; € R, 3 € (0, 1), convex.

(D)max —3A'KX—mIn2 =3\ + >, H(B)

A«
q Bi = \i (21)
Ay =0 (22)

All constraints are linear, hence (D) is a concave maximimization problem.
3.5 (D) is not a quadratic problem, because of the entropy term H([3;).

3.6 w* = Y  Nyz;. Find an ¢ for which A\; > 0 Hence, y;(w*Tz; +b) =
l—v=1-In ﬁf. From this equation, b* = y'(1 — /) — w*Tz;. The
resulting classifier is f(z) = (zTw* + b*).

3.7 If y;(zFw + b) < 1 then »; > 0, then the corresponding a; = 0 by
complementary slackness, and \; > 0 because the constraint (10) is tight.

3.8 If y;(zlw +b) > 1 then «; = 0 and the constraint (10) is slack, while the
constraint (11) is tight. Hence the corresponding dual variables are a; > 0
and \; = 0, by complementary slackness. For v; = 0 it follows that 8, = 5 =
0 + o, hence a; = 1/2.



3.9 Let (z;,y;) be a data point for which (w*,b*) has margin = 1. What can
you say about \;, v;, a; in this case? Find \; as a function of the other \’s.

For y;(xFw +b) = 1 we have v; = 0, 3; = 1/2 as above, and «; > 0 typically.
Hence \; + a; = 1/2. The dual objective g can be written as

1
g = —NKy/2— 3 Z N Kij \i + H(B;) + terms independent of \;
J#i
k;

Also, H(f;) = log?2 for any ;. So the maximum over ); is attained for

—k;/Ky; ifhi/ Ky € (—1/2,0)

> otherwise



