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Problem 1 – Maxima of convex functions

1.1 Assume that x∗ is not an extreme point. Then there are x1, x2 ∈
C, x1, x2 6= x∗, so that x∗ = tx1 + (1 − t)x2 for some t ∈ (0, 1). Then,

f(x∗) < tf(x1) + (1 − t)f(x2) ≤ tf(x∗) + (1 − t)f(x∗) = f(x∗) (1)

We have arrived at a contradiction, hence x∗ must be an extreme point.

1.2 x∗ is not unique. Counterexample: f(x) = x2 − 1, C = [−1, 1]; f has
two maxima at 1 and −1.

1.3 x∗ is not isolated. Counterexample in R
n: f(x) = ||x||2−1, C = {||x|| ≤

1}. Every point of the boundary of the unit ball is a maximum of f , and an
extreme point of C.

Problem 2 – The rate of convergence of gradient descent
with line minimization

2.1

g = ∇f = Qx (2)

f(x − αg) =
1

2
xT Qx +

α2

2
gTQg − αxT Qg (3)

d

dα
f(x − αg) = αgTQg − xT Qg = 0 (4)

α =
xT Qg

gTQg
=

gTg

gT Qg
(5)

The latter equality follows because x = Q−1g.

2.2

f(x − αg) =
1

2

[

xT Qx −
(xT Qg)2

gTQg

]

(6)
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f(x − αg)

f(x)
=

xT Qx − (xT Qg)2

gT Qg

xT Qx
(7)

= 1 −
(xT Qg)2

gTQgxT Qx
(8)

= 1 −
(gTg)2

(gTQg)(gTQ−1g)
(9)

The latter equality follows because x = Q−1g.

2.3 First, we get the eigenvalues of Q:
∣
∣
∣
∣

λ − 2 −a
−a λ − 2

∣
∣
∣
∣

= (λ − 2)2 − a2 = (λ − ǫ)(λ − 4 + ǫ)

It follows that λ1 = m = ǫ, λ2 = M = 4 − ǫ. Hence,

f(x − αg)

f(x)
≤ 1 −

4mM

(M + m)2
= 1 −

4ǫ(4 − ǫ)

42
= 1 − ǫ(1 − ǫ/4)

For small ǫ, this rate is nearly 1, and convergence will be very slow.

Problem 3 – SVM with logarithmic penalty

(P) min
w,b,γ1:m

1
2
||w||2 +

∑m

i=1 ln
1+e

γ
i

2

s.t. yi(w
Txi + b) ≥ 1 − γi, for all i (10)

γi ≥ 0 for all i (11)

3.1 γ1:m are called slack variables. Their role is to measure the amount by
which the margin conditions (2) are violated in the solution. γi = 0 whenever
a point is classified with margin 1 or larger.

3.2, 3.3

L(w, b, γ, λ, α) =
1

2
||w||2 +

m∑

i=1

ln
1 + eγ

i

2
+
∑

i

λi

[
1 − γi − yi(w

Txi + b)
]
−
∑

i

αiγi

∂L

∂w
= w −

∑

i

λiyixi ⇒ w =
∑

i

λiyixi (12)

∂L

∂b
=

∑

i

λiyi (13)

∂L

∂γi

=
eγ

i

1 + eγ
i

− λi − αi (14)

γi = − ln

(
1

λi + αi

− 1

)

(15)
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It follows that 0 < αi + γi < 1. Denote K = [Kij], Kij = yiyjx
T
i xj , βi =

αi + λi. Then

1 + eγ
i =

1

1 − βi

(16)

g(λ, α) =
1

2
λT Kλ −

∑

i

ln(1 − βi) − m ln 2 −
∑

i

λi +
∑

i

λi ln

(
1

βi

− 1

)

−

(
∑

i

λiyixi

)T (
∑

i

λiyixi

)

−
∑

i

αi ln

(
1

βi

− 1

)

(17)

= −
1

2
λT Kλ − m ln 2 −

∑

i

λi +
∑

i

[

− ln(1 − βi) + βi ln
1 − βi

βi

]

(18)

= −
1

2
λT Kλ − m ln 2 −

∑

i

λi +
∑

i

H(βi) (19)

In the above H(βi) denotes the entropy −βi ln βi − (1 − βi) ln(1 − βi).

3.4 It is easy to verify that g is concave: the term −λT Kλ is a negative
quadratic, with K positive definite, the second and third terms are constant,
respectively linear, and the terms H(βi) are entropies and therefore concave.
The domain of the dual objective is λi ∈ R, β ∈ (0, 1), convex.

(D) max
λ,α

−1
2
λT Kλ − m ln 2 −

∑

i λi +
∑

i H(βi)

s.t λi ≥ 0 (20)

q βi ≥ λi (21)

λT y = 0 (22)

All constraints are linear, hence (D) is a concave maximimization problem.

3.5 (D) is not a quadratic problem, because of the entropy term H(βi).

3.6 w∗ =
∑

i λ
∗
i yixi. Find an i for which λi > 0 Hence, yi(w

∗Txi + b) =

1 − γ∗
i = 1 − ln

1−β∗i
β∗i

. From this equation, b∗ = yi(1 − γ∗
i ) − w∗T xi. The

resulting classifier is f(x) = (xT w∗ + b∗).

3.7 If yi(x
T
i w + b) < 1 then γi > 0, then the corresponding αi = 0 by

complementary slackness, and λi > 0 because the constraint (10) is tight.

3.8 If yi(x
T
i w + b) > 1 then γi = 0 and the constraint (10) is slack, while the

constraint (11) is tight. Hence the corresponding dual variables are αi > 0
and λi = 0, by complementary slackness. For γi = 0 it follows that βi = 1

2
=

0 + αi, hence αi = 1/2.
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3.9 Let (xi, yi) be a data point for which (w∗, b∗) has margin = 1. What can
you say about λi, γi, αi in this case? Find λi as a function of the other λ’s.

For yi(x
T
i w + b) = 1 we have γi = 0, βi = 1/2 as above, and αi > 0 typically.

Hence λi + αi = 1/2. The dual objective g can be written as

g = −λ2
i Kii/2 −

1

2

∑

j 6=i

λjKij

︸ ︷︷ ︸

ki

λi + H(βi) + terms independent of λi

Also, H(βi) = log 2 for any λi. So the maximum over λi is attained for

λi =







−ki/Kii if ki/Kii ∈ (−1/2, 0)
0, if ki ≥ 0
1
2
, otherwise
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