STAT 538 Final Exam Solutions Wednesday March 16, 2011

- notes and books are allowed
- electronic devices are not allowed

Problem 1 – Convex sets

1.1 If $z_{1,2} \in A + B$ then $z_{1,2} = a_{1,2} + b_{1,2}$ with $a_{1,2} \in A$, $b_{1,2} \in B$. Hence, $tz_1 + (1-t)z_2 = [ta_1 + (1-t)a_2] + [tb_1 + (1-t)b_2]$; the first term is in A and the second in B by the convexity of A, B, therefore the sum is in A + B.

1.2 If $z \in S_a$, then there exist $s \in S$ so that x = z - s and $||x|| \leq a$. Therefore, $S_a = S + \overline{B}(0, a)$ the (closed) ball of radius *a* centered at the origin. Since *S* is convex, and the ball is convex for any norm (BV), S_a is convex.

1.3 The entropy is a concave function of p, therefore -H(p) is convex, therefore the sublevel set $\{-H(p) \le a\} = \{H(p) \ge a\}$ is convex.

1.4 The Bregman divergence is convex in y, with $d_{\phi}(y = x, x) = 0$ a minimum. Thus, the Bregman ball centered at x is the sublevel set $\{d_{\phi}(y, x) \leq a\}$, which is convex.

Problem 2 – Boosting as Minimum Relative Entropy

(MRE)
$$\min_{u} \sum_{i} u_i (\ln u_i - \ln w_i^k)$$
 (1)

s.t.
$$\sum_{i}^{j} z_{i} u_{i} = 0 \qquad (2)$$

$$\sum_{i} u_i = 1, \tag{3}$$

2.1The objective is $\sum_{i} u_i (\ln u_i - \ln w_i^k) = \sum_{i} u_i \ln u_i - \sum_{i} u_i \ln w_i^k$. $u \ln u$ is known to be convex, and the second sum is a linear function in u, so the

objective is convex. There are only linear equality constraints, so (MRE) is a convex optimization problem.

2.2
$$L(u,c,\nu) = \sum_{i} u_i (\ln u_i - \ln w_i^k) + c \sum_{i} z_i u_i + \nu (\sum_{i} u_i - 1)$$
 (4)

 $\mathbf{2.3}$

$$\frac{\partial L}{\partial u_i} = \ln u_i + 1 - \ln w_i^k + cz_i + \nu \tag{5}$$

It follows that

$$u_i = w_i^k e^{-cz_i - \nu - 1} (6)$$

2.4 We have

$$0 = \sum_{i} z_{i} w_{i}^{k} e^{-cz_{i}-\nu-1}$$
(7)

$$= \sum_{z_i=+1}^{k} w_i^k e^c e^{-\nu - 1} + \sum_{z_i=-1}^{k} (-w_i)^k e^{-c} e^{-\nu - 1}$$
(8)

$$\sum_{z_i=+1} w_i^k e^c = \sum_{z_i=-1} w_i^k e^{-c}$$
(9)

$$c = \frac{1}{2} \ln \frac{\sum_{z_i=+1} w_i^k}{\sum_{z_i=-1} w_i^k} = \frac{1}{2} \ln \frac{1-e_k}{e_k}$$
(10)

In the above e_k is the weighted sum of the errors of f_k and c is identical with the c_k coefficient of DISCRETEADABOOST. If we plug in c in (6) and then normalize, we obtain the solution to (MRE). This solution is identical to the weight update formula for DISCRETEADABOOST.

Problem 3 – General barrier function

$$\min \quad f_0(x) \tag{11}$$

s.t.
$$f_i(x) \le 0, \ i = 1 : m$$
 (12)

3.1 *h* is convex and increasing, and f_i is convex, which assures that $h(f_i)$ is convex; f_0 is convex too, and t > 0. Hence, we have a linear combination of convex functions which should be convex.

3.2 Since $x^*(t) = \min_x t f_0(x) + \phi_h(x)$, we have that the gradient of $t f_0 + \phi_h$ vanishes at $x^*(t)$, i.e

$$t\nabla f_0(x^*(t)) + \sum_i h'(f_i(x^*(t)))\nabla f_i(x^*(t)) = 0$$
(13)

If we set now $\lambda_i = h'(f_i(x^*(t)))/t$, this λ_i will satisfy $\operatorname{argmin}_x f_0 + \sum_i \lambda_i f_i(x) = x^*(t)$ hence it will be dually feasible, for primal value $x^*(t)$.

$$g(\lambda) = f_0(x^*(t)) + \sum_i \lambda_i f_i(x^*(t))$$
 (14)

$$g(\lambda) \leq p^* \leq f_0(x^*(t)) \tag{15}$$

gap =
$$f_0(x^*(t)) - g(\lambda) = \frac{1}{t} \sum_i h'(f_i(x^*(t))) f_i(x^*(t))$$
 (16)

The duality gap depends on $u_i = f_i(x^*(t))$. Thus we have to choose an h so that h'(u)u =constant. In other words, we have to solve the differential equation

$$\frac{dh}{du}u = C \tag{17}$$

This is equivalent to $dh = C \frac{du}{u}$ whose well known solution is $h(u) = C \ln u + D$.

Problem 4 – Linearly Separable Support Vector Machine

Let $g(\alpha) = \sum_{i} \alpha_{i} - \frac{1}{2} \sum_{i} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}$. At the solution (w^{*}, α^{*}) , we have that $p^{*} = g(\alpha^{*})$ and $w^{*} = \sum_{i} \alpha_{i}^{*} y_{i} x_{i}$. Hence,

$$p^{*} = \frac{1}{2} ||w^{*}||^{2} = \frac{1}{2} \sum_{i} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{i}^{T} x_{j}$$
$$= \sum_{i} \alpha_{i}^{*} - g(\alpha^{*}) = \sum_{i} \alpha_{i}^{*} - p^{*}$$

Therefore, $||w^*||^2 = 2p^* = \sum_i \alpha_i^*$.

 $\mathbf{3.3}$