
STAT 538 Final Exam Solutions
Wednesday March 16, 2011

• notes and books are allowed

• electronic devices are not allowed

Problem 1 – Convex sets

1.1 If z1,2 ∈ A + B then z1,2 = a1,2 + b1,2 with a1,2 ∈ A, b1,2 ∈ B. Hence,
tz1 + (1− t)z2 = [ta1 + (1− t)a2] + [tb1 + (1− t)b2]; the first term is in A and
the second in B by the convexity of A, B, therefore the sum is in A + B.

1.2 If z ∈ Sa, then there exist s ∈ S so that x = z − s and ||x|| ≤ a.
Therefore, Sa = S + B̄(0, a) the (closed) ball of radius a centered at the
origin. Since S is convex, and the ball is convex for any norm (BV), Sa is
convex.

1.3 The entropy is a concave function of p, therefore −H(p) is convex, there-
fore the sublevel set {−H(p) ≤ a} = {H(p) ≥ a} is convex.

1.4 The Bregman divergence is convex in y, with dφ(y = x, x) = 0 a mini-
mum. Thus, the Bregman ball centered at x is the sublevel set {dφ(y, x) ≤ a},
which is convex.

Problem 2 – Boosting as Minimum Relative Entropy

(MRE) minu

∑

i

ui(ln ui − ln wk
i ) (1)

s.t.
∑

i

ziui = 0 (2)

∑

i

ui = 1, (3)

2.1The objective is
∑

i
ui(lnui − ln wk

i ) =
∑

i
ui ln ui −

∑
i
ui ln wk

i . u lnu is
known to be convex, and the second sum is a linear function in u, so the
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objective is convex. There are only linear equality constraints, so (MRE) is
a convex optimization problem.

2.2 L(u, c, ν) =
∑

i

ui(ln ui − ln wk
i ) + c

∑

i

ziui + ν(
∑

i

ui − 1) (4)

2.3
∂L

∂ui

= ln ui + 1 − ln wk
i + czi + ν (5)

It follows that
ui = wk

i e
−czi−ν−1 (6)

2.4 We have

0 =
∑

i

ziw
k
i e

−czi−ν−1 (7)

=
∑

zi=+1

wk
i e

ce−ν−1 +
∑

zi=−1

(−wi)
ke−ce−ν−1 (8)

∑

zi=+1

wk
i e

c =
∑

zi=−1

wk
i e

−c (9)

c =
1

2
ln

∑
zi=+1

wk
i∑

zi=−1
wk

i

=
1

2
ln

1 − ek

ek

(10)

In the above ek is the weighted sum of the errors of fk and c is identical with
the ck coefficient of DiscreteAdaBoost. If we plug in c in (6) and then
normalize, we obtain the solution to (MRE). This solution is identical to the
weight update formula for DiscreteAdaBoost.

Problem 3 – General barrier function

min
x

f0(x) (11)

s.t. fi(x) ≤ 0, i = 1 : m (12)

3.1 h is convex and increasing, and fi is convex, which assures that h(fi) is
convex; f0 is convex too, and t > 0. Hence, we have a linear combination of
convex functions which should be convex.

3.2 Since x∗(t) = minx tf0(x) + φh(x), we have that the gradient of tf0 + φh

vanishes at x∗(t), i.e

t∇f0(x
∗(t)) +

∑

i

h′(fi(x
∗(t)))∇fi(x

∗(t)) = 0 (13)

If we set now λi = h′(fi(x
∗(t)))/t, this λi will satisfy argminxf0+

∑
i λifi(x) =

x∗(t) hence it will be dually feasible, for primal value x∗(t).
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3.3

g(λ) = f0(x
∗(t)) +

∑

i

λifi(x
∗(t)) (14)

g(λ) ≤ p∗ ≤ f0(x
∗(t)) (15)

gap = f0(x
∗(t)) − g(λ) =

1

t

∑

i

h′(fi(x
∗(t)))fi(x

∗(t)) (16)

The duality gap depends on ui = fi(x
∗(t)). Thus we have to choose an h

so that h′(u)u =constant. In other words, we have to solve the differential
equation

dh

du
u = C (17)

This is equivalent to dh = C du
u

whose well known solution is h(u) = C ln u +
D.

Problem 4 – Linearly Separable Support Vector Machine

Let g(α) =
∑

i αi −
1

2

∑
i αiαjyiyjx

T
i xj . At the solution (w∗, α∗), we have

that p∗ = g(α∗) and w∗ =
∑

i α
∗

i yixi. Hence,

p∗ =
1

2
||w∗||2 =

1

2

∑

i

αiαjyiyjx
T
i xj

=
∑

i

α∗

i − g(α∗) =
∑

i

α∗

i − p∗

Therefore, ||w∗||2 = 2p∗ =
∑

i α
∗

i .
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