1 Conditional probability, total probability, Bayes’ rule

Definition of conditional distribution of \(A \) given \(B \).

\[
P_{A|B}(a|b) = \frac{P_{AB}(a,b)}{P_B(b)}
\]

whenever \(P_B(b) \neq 0 \) (and \(P_{A|B}(a|b) \) undefined otherwise).

Total probability formula. When \(A, B \) are events, and \(\bar{B} \) is the complement of \(B \)

\[
P(A) = P(A,B) + P(A,\bar{B}) = P(A|B)P(B) + P(A|\bar{B})P(\bar{B})
\]

When \(A, B \) are random variables, the above gives the marginal distribution of \(A \).

\[
P_A(a) = \sum_{b \in \Omega(B)} P_{AB}(a,b) = \sum_{b \in \Omega(B)} P_{A|B}(a|b)P_B(b)
\]

Bayes’ rule

\[
P_{A|B} = \frac{P_AP_B|A}{P_B}
\]

The chain rule Any multivariate distribution over \(n \) variables \(X_1, X_2, \ldots X_n \) can be decomposed as:

\[
P_{X_1,X_2,\ldots, X_n} = P_{X_1}P_{X_2|X_1}P_{X_3|X_1,X_2}P_{X_4|X_1,X_2,X_3} \cdots P_{X_n|X_1,\ldots, X_{n-1}}
\]
2 Probabilistic independence

\[A \perp B \iff P_{AB} = P_A P_B \]

We read \(A \perp B \) as “\(A \) independent of \(B \)”. An equivalent definition of independence is:

\[A \perp B \iff P_{A|B} = P_A \]

The above notation are shorthand for

\[
\text{for all } a \in \Omega(A), \ b \in \Omega(B), \ P_{A|B}(a|b) = P_A(a) \text{ whenever } P_B \neq 0 \\\n\frac{P_{AB}(a, b)}{P_B(b)} = P_A(a) \text{ whenever } P_B \neq 0 \\\nP_{AB}(a, b) = P_A(a) P_B(b)
\]

Intuitively, probabilistic independence means that knowing \(B \) does not bring any additional information about \(A \) (i.e. doesn’t change what we already believe about \(A \)). Indeed, the mutual information\(^1\) of two independent variables is zero.

Exercise 1 [The exercises in this section are optional and will not influence your grade. Do them only if you have never done them before.]

Prove that the two definitions of independence are equivalent.

Exercise 2 \(A, B \) are two real variables. Assume that \(A, B \) are jointly Gaussian. Give a necessary and sufficient condition for \(A \perp B \) in this case.

Conditional independence

A richer and more useful concept is the conditional independence between sets of random variables.

\(^1\)An information theoretical quantity that measures how much information random variable \(A \) has about random variable \(B \).
Once C is known, knowing B brings no additional information about A. Here are a few more equivalent ways to express conditional independence. The expressions below must hold for every a, b, c for which the respective conditional probabilities are defined.

$P_{ABC}(a, b, c) = P_{A|C}(a|c)P_{B|C}(b|c)$

$P_{ABC}(a, b, c) = P_{A|C}(a|c)P_{B|C}(b|c)$

$P_{ABC}(a, b, c)P_{C}(c) = P_{A|C}(a|c)P_{B|C}(b|c)$

Since independence between two variables implies the joint probability distribution factors, it implies far fewer parameters are necessary to represent the joint distribution ($r_A + r_B$ rather than r_Ar_B), and other important simplifications such as $A \perp B \Rightarrow E[AB] = E[A]E[B]$ [Exercise 3: Prove this relationship.]

These definitions extend to sets of variables:

$AB \perp CD \equiv P_{ABCD} = P_{AB}P_{CD}$

and

$AB \perp CD|EF \equiv P_{ABCD|EF} = P_{AB|EF}P_{CD|EF}$.

Furthermore, independence of larger sets of variables implies independence
of subsets (for fixed conditions):

\[AB \perp CD | EF \Rightarrow A \perp CD | EF, A \perp C | EF, \ldots \]

[**Exercise 4** Prove this.]

Notice that \(A \perp B\) does not imply \(A \perp B | C\), nor the other way around.

[**Exercise 5** Find examples of each case.]

The Factorization Lemma \(A \perp C | B\) iff there exist functions \(\phi_{AB}, \phi_{BC}\) so that \(P_{ABC} = \phi_{AB}\phi_{BC}\).

Proof The \(\Rightarrow\) statement is obvious, so we will now prove the converse implication, that is, if \(P_{ABC} = \phi_{AB}\phi_{BC}\) for all \((a, b, c) \in \Omega_{ABC}\), then \(A \perp C | B\).

\[
P_{AB}(a,b) = \sum_c \phi_{AB}(a,b)\phi_{BC}(b,c) = \phi_{AB}(a,b)\psi_B(b) \quad (1)
\]

\[
P_{BC}(b,c) = \sum_a \phi_{AB}(a,b)\phi_{BC}(b,c) = \phi_{BC}(b,c)\psi'_B(b) \quad (2)
\]

\[
P_B(b) = \psi_B(b)\psi'_B(b) \quad (3)
\]

\[
\frac{P_{AB}P_{BC}}{P_B} = \frac{\phi_{AB}(a,b)\psi_B(b)\phi_{BC}(b,c)\psi'_B(b)}{\psi_B(b)\psi'_B(b)} = P_{ABC} \quad (4)
\]

Moreover, whenever \(P_{BC}(b,c) \neq 0\), we have \(P_{A|B} = \frac{P_{AB}}{P_B} = \frac{P_{ABC}}{P_{BC}} = P_{A|BC}\). \(\square\).

Two different factorizations of the joint probability \(P(a,b,c)\) when \(A \perp B | C\) are a good basis for understanding the two primary types of graphical models we will study: *undirected graphs*, also known as *Markov random fields* (MRFs); and *directed graphs*, also known as *Bayes’ nets* (BNs) and *belief networks*.

One factorization,

\[
P_{ABC}(a,b,c) = \frac{P_{AC}(a,c)P_{BC}(b,c)}{P_C(c)} = \phi_{AC}(a,c)\phi_{BC}(b,c)
\]

is into a product of *potential* functions defined over subsets of variables with a term in the denominator that compensates for “double-counting” of variables.
in the intersection. From this factorization an undirected graphical representation of the factorization can be constructed by adding an edge between any two variables that cooccur in a potential.

The other factorization,

\[P_{ABC}(a, b, c) = P_C(c)P_{A|C}(a|c)P_{B|C}(b|c), \]

is into a product of conditional probability distributions that imposes a partial order on the variables (e.g. C comes before A, B). From this factorization a directed graphical model can be constructed by adding directed edges that match the “causality” implied by the conditional distributions. In particular, if the factorization involves \(P_{X|YZ} \) then directed edges are added from Y and Z to X.

3 The (semi)-graphoid axioms (Optional)

[Exercise: how many possible conditional independence relations are there between n variables?]

Some independence relations imply others. [Exercise. \(A \perp B, B \perp C \Rightarrow A \perp C \)? \(A \not\perp B, B \not\perp C \Rightarrow A \not\perp C \)? Prove or give counterexamples.]

For any distribution \(P_V \) over a set of variables \(V \) the following properties of independence hold. Let \(X, Y, Z, W \) be disjoint subsets of discrete variables from \(V \).

- **S** \(X \perp Y \mid Z \Rightarrow Y \perp X \mid Z \) (Symmetry)
- **D** \(X \perp YW \mid Z \Rightarrow X \perp Y \mid Z \) (Decomposition)
- **WU** \(X \perp YW \mid Z \Rightarrow X \perp Y \mid WZ \) (Weak union)
- **C** \(X \perp Y \mid Z \) and \(X \perp W \mid YZ \Rightarrow X \perp YW \mid Z \) (Contraction)
- **I** If \(P \) is strictly positive for all instantiations of the variables, \(X \perp Y \mid WZ \) and \(X \perp W \mid YZ \Rightarrow X \perp YW \mid Z \) (Intersection)

Properties S, D, WU, C are called the semi-graphoid axioms. The semi-graphoid axioms together with property [I] are called the graphoid axioms.