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Key Concepts and Terms
❖ Topological Data Analysis (TDA):  

❖ Combines algebraic topology and other tools from pure 
mathematics to give mathematically rigorous and quantitative 
study of “shape” 

❖ Functional Data Analysis (FDA):  

❖ An area of statistics where it is of key interest to analyze data 
providing information about curves, surfaces, images, and any 
other variables that vary over a given continuum



Modeling Variation across Shapes

Fossil Classification

[Boyer et al. (2011)]

Phylogeny of Darwin’s Finch Beaks 

[Gould (1977)]



History of Shape Statistics

❖ Classical shape statistics represented three-dimensional shapes as 
user defined landmark points placed on the shape. 

❖ This representation was partly due to the limited imaging and 
processing technology of the time.  

❖ Computational methodology that effectively incorporate 
information embedded in three-dimensional shapes simply did not 
exist.



Shape Representations
❖ Methods have been developed to generate automated geometric 

morphometrics for shapes, bypassing the need for user-specified 
landmarks

[Boyer et al. (2011)]



Shape Representations
❖ Currently, much improved imaging technologies allow three-

dimensional shapes to be represented as meshes --- a collection of 
vertices, faces, and edges

[Boyer et al. (2011)]



Motivation

❖ Methods for geometric morphometrics are known to suffer from 
structural errors when comparing shapes that are highly dissimilar. 

❖ These analyses require the specification of a metric, which is not 
always a straightforward task. 

❖ Turner et al. (2014) developed a statistical summary of shape data 
known as the persistent homology transform (PHT). 

❖ The PHT bypasses the need to specify landmarks, and is robust to 
highly dissimilar and non-isomorphic shapes.



Motivation

But more needs to be done to fully integrate TDA measures 
with FDA methods…



Main Objective(s)
❖ Transform shapes or images into a representation that can be used in wide 

range of functional data analytic methods (e.g. generalized functional linear 
models, GFLMs)  

❖ Desired Transformation Properties:
❖ Injective mapping, so that the resulting measures are summary statistics
❖ We want to be able to compute distances or define probabilistic models in 

the transformed space  

❖ Topological Summaries: 
❖ Persistent Homology Transform (PHT)
❖ Smooth Euler Characteristic Transform (SECT)



Persistent Homology

⊂ ⊂ ⊂ ⊂ ⊂ ⊂

X0 X1 X2 X3 X4 X5 X6

Construct a filtration K

The persistent homology ofK, denoted by PH⇤(K), keeps track of the progression

of homology groups generated by the filtration
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Evolution of homology as a birth-death pair.
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Shape of root systems

Persistent Homology
In practice…



Persistent Homology Transform

Let M be a shape of Rd that can be written as a finite simplicial complex K.

And let ⌫ 2 Sd�1 be any unit vector over the unit sphere.

We define a filtration K(⌫) of K parameterized by a height function r as

K(⌫)r = {x 2 K : x · ⌫  r}

The k-th dimensional persistence diagram Xk(K, ⌫) summarizes how the topol-
ogy of the filtration K(⌫) changes over the height parameter r
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Persistent Homology Transform
Definition: The persistent homology transform (PHT) of K ⇢ Rd

is the func-

tion

PHT(K) : Sd�1 ! Dd

⌫ 7!
�
X0(K, ⌫), X1(K, ⌫), . . . , Xd�1(K, ⌫)

�
.

[Turner et al. (2014)]

❖ The PHT measures the change in homology by the height filtration over all 
directions on the unit sphere.  

❖ It allows for the comparisons and similarity studies between shapes. 

❖ The PHT preserves information, and a notion of statistical sufficiency was 
suggested for the PHT.



Example Using the PHT
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Ex: Phylogenetic groups of primate calcanei with 67 genera.



Pitfalls of the PHT

❖ Most widely used functional regression models use covariate that 
have an inner product structure defined in the Hilbert space.  

❖ The geometry of the space of persistence diagrams is known to be a 
Alexandrov space with curvature bounded from below.  

❖ The PHT does not admit a simple inner product structure as it is a 
collection of persistence diagrams. 

❖ Therefore, it is challenging to use in all standard functional data 
analytic methods.



The Euler Characteristic
The Euler characteristic (EC) � for a finite simplicial complex Kd for d = 3 is
defined by:

�(K3) = V � E + F,

where V , E, and F are the numbers of vertices, edges, and faces, respectively.



Euler Characteristic Curve

Definition: The EC curve is defined by:

�K
⌫ : [a⌫ , b⌫ ] ! Z ⇢ R

x 7! �
�
Kx

⌫

�
.

[Turner et al. (2014)]



Euler Characteristic Curve

[Turner et al. (2014)]



Smooth Euler Characteristic Curve

The smooth Euler characteristic (SEC) curve is computed by:

1. Taking the mean value of the EC curve �̄K
⌫ over [a⌫ , b⌫ ]

2. Subtracting it from the value of the EC curve �K
⌫ (x) at every x 2 [a⌫ , b⌫ ]



Euler Characteristic Curve

[Turner et al. (2014)]



Smooth Euler Characteristic Curve



Conventional Wisdom in Statistics
❖ SECT summaries are a collection of curves — this is a decidedly 

infinite-dimensional topological summary statistic.  

❖ By construction, the SECT is a continuous, linear function that is an 
element of the Hilbert space L2 with a simple inner product 
structure. 

❖ This means that their structure allows for quantitative comparisons 
using the full scope of functional and nonparametric regression 
methodology. 

❖ This is the basis of functional data analysis (FDA).



Predicting Clinical Outcomes in Radiogenomics

❖ Radiomics: A newer subfield of genetics and genomics which 
focuses on the study of correlations between imaging or network 
features and genetic variation. 

❖ Gliomas are a collection of tumors arising from glia or their 
precursors within the central nervous system.  

❖ Of all gliomas, glioblastoma multiforme (GBM) is the most 
aggressive and most common in humans.



Predicting Clinical Outcomes in Radiogenomics

❖ Magnetic resonance images (MRIs) of primary GBM tumors were 
collected from ~40 patients archived by the The Cancer Imaging 
Archive (TCIA)  

❖ These patients also had matched genomic and clinical data collected 
by The Cancer Genome Atlas (TCGA)  

❖ Goal: We want to use the SECT to predict clinical outcomes:
❖ Overall Survival (OS)
❖ Disease Free Survival (DFS)



Application to Glioblastoma Multiforme



Regression with Functional Covariates

Assume that we have a finite response y = (y1, . . . , yn)|.

Denote the SECT features as square integrable functions F⌫(t) on the real in-

terval domain T where t 2 T .

Given a real-valued measure dw, a functional regression model takes on the form

y ⇠ p(y |µ), g�1
(µ) = ⌘ + " =

Z

T

mX

⌫=1

f (F⌫(t)) dw(t) + ".

Here f is a smooth operator from L2
to R to be estimated over m directions.
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Functional Linear Models

Classical parametric inferences assume that f is linear in the covariates:

⌘ =

mX

⌫=1

hF⌫(t),�⌫(t)i,

where unlike traditional linear regression,

• �⌫(t) is an unknown smooth parameter function that is also square inte-

grable on the domain T ;

• h·, ·i denotes an inner product in the Hilbert space L2
.
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Limitations for Functional Linear Models

❖ In many applications, it is considered too restrictive to only assume 
linear effects on the functional covariates.  

❖ For example, it is reasonable to assume that interactions between 
modes of brain activity extend well beyond additivity. 

❖ Nonlinear kernel regression models serve as a natural alternative 
choice, as they often display greater predictive accuracy than linear 
models.



Functional Kernel Models

Assume the target function f to be an element of the reproducing kernel Hilbert

space (RKHS) H equipped with an inner product, with

H =

8
<
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and estimator function

bf (F⌫(t)) =
nX

i=1

↵i k (F⌫(t), F⌫,i(t)) .
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Functional Kernel Models

We can posit a generalized functional kernel regression model

⌘ ⇠ N (0,�2K)

where K is a symmetric and positive-definite covariance (kernel) matrix with

elements Kij = k (F⌫,i(t), F⌫,j(t)).

Here we may consider for example:

1. k(s,v) = s|v/p+ h;

2. k(s,v) = exp{�hks� vk2};

3. k(s,v) = log(ks� vkh + 1).
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Bayesian Functional Kernel Regression

When modeling continuous outcomes

y = ⌘ + ", " ⇠ N (0, ⌧2I),

where each parameter is assumed to come from the following prior distributions

⌘ ⇠ N (0,�2K), ��2, ⌧�2 ⇠ G(1,2).

We will exclusively consider the posterior distribution that arises in the limits
1 ! 0 and 2 ! 0.
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Posterior Inference and Sampling

Markov chain Monte Carlo (MCMC) via a Gibbs sampler for the regression
model:

(1) ⌘ |y,!,�2, ⌧2 ⇠ N (m⇤,V ⇤) wherem⇤ = ⌧�2V ⇤y and V ⇤ = ⌧2�2(⌧2K+
�2In)�1;

(2) �2 |y,⌘,!, ⌧2 ⇠ G(a⇤, b⇤) where a⇤ = n/2 and b⇤ = ⌘|K�1⌘/2;

(3) ⌧2 |y,⌘,!,�2 ⇠ G(a⇤, b⇤) where a⇤ = n/2 and b⇤ = y|y/2.



Posterior Predictive Distribution

[Speed and Balding (2014)]

To predict outcomes for individuals in a test set T , based on what we observe
in the sample set S, let

{y(b)
T = ⌘(b)

T }Bb=1

where, for B MCMC samples, we define

⌘(b)
T = KTSK

�1
SS⌘

(b)
S , b = 1, . . . , B

with KTS and KSS being submatrices that are found by first computing K⇤ =
[KSS ;KST ;KTS ;KTT ].



Posterior Predictive Distribution

[Speed and Balding (2014)]

To predict outcomes for individuals in a test set T , based on what we observe
in the sample set S, let

{y(b)
T = ⌘(b)

T }Bb=1

where, for B MCMC samples, we define

⌘(b)
T = KTSK

�1
SS⌘

(b)
S , b = 1, . . . , B

with KTS and KSS being submatrices that are found by first computing K⇤ =
[KSS ;KST ;KTS ;KTT ].



Predicting Clinical Outcomes in Radiogenomics

❖ Compare the SECT with three key types of glioblastoma tumor characteristics:
❖ mRNA Gene Expression Measurements
❖ Tumor Morphometry
❖ Tumor Volume and Geometrics  

❖ We attempt to predict two clinical outcomes:
❖ Disease Free Survival (DFS)
❖ Overall Survival (OS) 

❖ Perform 80-20 (in/out of sample) splits; 100 times 

❖ Predictive Measure: Root Mean Square Error of Prediction (RMSEP) 



Prediction Results

Average RMSPE across both clinical outcomes. The number in 
parenthesis is the standard error due to random sampling

Disease Free Survival Overall Survival

Data Type RMSEP Pr[Optimal] RMSEP Pr[Optimal]

Gene Expression 0.944 (0.035) 0.20 0.981 (0.030) 0.27

Morphometrics 0.942 (0.035) 0.07 0.965 (0.029) 0.15

Volume 0.939 (0.035) 0.06 0.964 (0.029) 0.16

SECT 0.803 (0.035) 0.69 0.958 (0.028) 0.42



Future Directions and Ongoing Work
❖ Proving Sufficiency for Summary Statistics of 3D Shapes:

❖ An important open problem is proving that the transformations defined by the 
SECT and PHT are capturing all sufficient information needed to fully characterize a 
given shape.  

❖ Improving Phenotypic prediction with Manifold Approximation and Multiple 
Kernel Learning:
❖ Begin to learn about the manifold underlying the 3D shapes in order to extract 

information about their intrinsic geometries 

❖ Gene Set Enrichment Analysis Using Sufficient Shape Statistics: 
❖ It is of natural interest to probe whether variation in shape is correlated with 

molecular signaling pathway dysregulation.
❖ Build a framework for analyzing the heterogeneity of fitness trajectories in cells 

exposed to therapy (i.e. stress).



Relevant References
The Persistent Homology Transform (PHT):

❖ Turner, K., S. Mukherjee, and D. M. Boyer (2014). Persistent homology 
transform for modeling shapes and surfaces. Information and Inference: 
A Journal of the IMA. 3(4): 310–344.  

The Smooth Euler Characteristic Transform (SECT):
❖ L. Crawford, A. Monod, A.X. Chen, S. Mukherjee, and R. Rabadán 

(2017). Functional data analysis using a topological summary statistic: 
the smooth Euler characteristic transform. arXiv. 1611.06818.  

Tropical Sufficient Statistics for Persistent Homology (Tropix):
❖ A. Monod, S. Kališnik Verovšek, J.Á. Patiño-Galindo, and L. Crawford 

(2017). Tropical sufficient statistics for persistent homology. arXiv. 
1709.02647.



Available Source Code

Crawford Lab Website:
❖ http://www.lcrawlab.com  

The Smooth Euler Characteristic Transform (SECT):
❖ https://github.com/RabadanLab/SECT 

Bayesian Approximate Kernel Regression (BAKR):
❖ https://github.com/lorinanthony/BAKR

http://www.lcrawlab.com
https://github.com/RabadanLab/SECT
https://github.com/lorinanthony/BAKR
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