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Multiscale feature extraction in multi-dimensions

Goals:

(i) present a method for extracting geometric information of the
underlying multivariate distribution;

(ii) accomplish (i) in a multiscale fashion;

(iii) provide a tool for the visualization of geometric aspects of a
multivariate (or even infinite-dimensional) data set, and

(iv) show that the extracted features might be useful for inference
(classification).

Will will use notions of

• depth (Tukey depth)
• FDA
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Relations and inspirations

mass estimation (Ting et al. 2012)

shorth plot (Einmahl et al. 2010)

local depth (Agostinelli and Ramanazzi, 2011, Paindaveine
and van Bever, 2012, and Dutta et al., 2015)
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Some basic challenges in non-parametric learning

• Choosing ‘right’ scale in large dimensions?

− Curse of dimensionality;

− right ‘size’ of subsets; mass concentration

• Where to look (for features) in large dimensions?

• ‘kernel-trick’ (non-linear methods; comput. advantage)

Challenge: Interpretability; how to choose kernel?

• Choose a fixed tuning parameter or consider all values?

− SiZer, mode tree, persistent homology consider all values.

But: Limit cases are not meaningful.
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Basic idea

Idea:

• Construct a feature map driven by geometric consideration
(in contrast to RKHS-type);

• Features are real-valued functions on [0, 1] that

thus can be plotted  visualization,

contain geometric information  interpretability.
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Wine data

from UC Irvine Machine Learning Repository.

177 observations in 13 dimensions

3 classes (labeled) [58 in class 1, 70 class 2, 49 class 3]
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Feature functions for wine data
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Feature functions for 13-dimensional wine data
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Multiscale feature extraction

Novel idea (inspired by Ting et al. 2012):

• Define a distribution of depths for a given point x

 corresponding quantile functions q̂x(δ), 0 ≤ δ ≤ 1,
are feature functions.

• Distribution of depths is constructed by randomly selecting
subsets containing x , and finding depths of x within these
subsets.

We propose to use (circular) cones as basic subsets.
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Multiscale feature extraction

Different scales:

small quantiles  local information (density)

large quantiles  global information (depth)

intermediate quantiles? (How important are they for high
dimensions?)

 multiscale (scale given by quantile level)

Extracting multiscale geometric information from high-dimensional and infinite-dimensional data with application to classification



Multiscale feature extraction

Different scales:

small quantiles  local information (density)

large quantiles  global information (depth)

intermediate quantiles? (How important are they for high
dimensions?)

 multiscale (scale given by quantile level)

Extracting multiscale geometric information from high-dimensional and infinite-dimensional data with application to classification



Multiscale feature extraction

Different scales:

small quantiles  local information (density)

large quantiles  global information (depth)

intermediate quantiles? (How important are they for high
dimensions?)

 multiscale (scale given by quantile level)

Extracting multiscale geometric information from high-dimensional and infinite-dimensional data with application to classification



Multiscale feature extraction

Different scales:

small quantiles  local information (density)

large quantiles  global information (depth)

intermediate quantiles? (How important are they for high
dimensions?)

 multiscale (scale given by quantile level)

Extracting multiscale geometric information from high-dimensional and infinite-dimensional data with application to classification



Multiscale feature extraction

Different scales:

small quantiles  local information (density)

large quantiles  global information (depth)

intermediate quantiles? (How important are they for high
dimensions?)

 multiscale (scale given by quantile level)

Extracting multiscale geometric information from high-dimensional and infinite-dimensional data with application to classification



Depth quantile functions

Intuition:

‘Sit at a (data) point and look in one direction’ - depth
quantile function describes aspects of topographical
information of what can be seen.

Question: How to find relevant directions?
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Construction of depth quantile functions
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Construction of depth quantile functions
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Population versions

Given a line ` ∈ Rd and s, x ∈ `, let Cx(s) denote a cone with

opening angle α fixed

tip in s ∈ `
x ∈ Cx(s)

tip s moves in both directions away from x , such that x ∈ Cx(s).

Split cone into two parts at x :

Ax(s) subcone of Cx(s) with x the midpoint of its base,

Bx(s) = Cx(s) \ Ax(s) (‘frustum’)

Let
dx ,`(s) = min

{
F (Ax(s)),F (Bx(s))

}
.
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How do these depth functions look like as a function of s?

Extracting multiscale geometric information from high-dimensional and infinite-dimensional data with application to classification



Examples
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Depth quantile functions

Choose cone tip s randomly, i.e let S ∼ G on `. Consider the cdf
of dx ,`(S)

P(dx ,`(S) ≤ t) = G
(
s ∈ ` : dx ,`(s) ≤ t

)
.

and set

qx,`(δ) = inf
{
t : G (s : dx,`(s)) ≤ t) ≥ δ

}

 put all depth functions onto same ‘scale’
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Questions

What information is contained in depth quantile functions?

How to use for statistical inference?
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Information contained in depth quantile functions

limδ→1 qx ,`(δ) = “Tukey depth of x among projections of

data onto `”;

limδ→0
qx,`(δ)

αd = C f (x)
g(x) , where C is known (localization)

f , g are densities of F and G .

“multiscale”
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f , g are densities of F and G .

“multiscale”

Extracting multiscale geometric information from high-dimensional and infinite-dimensional data with application to classification



Empirical versions

Empirical versions are obtained

• by replacing F by the empirical distribution Fn;

• for each pair (Xi ,Xj), considering the line `ij passing through
both Xi and Xj

• letting x =
Xi+Xj

2 .

Resulting empirical depth quantile functions are denoted by q̂ij(δ).

Computation: Embarrassingly parallelizable (if needed).
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Averaged feature functions

Suppose, for each pair (Xi ,Xj), we have q̂ij(δ) 
(n
2

)
feature

functions.

Reduce total number of functions by averaging.
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Averaged feature functions

K ≥ 1 classes

• For each fixed Xi , average q̂ij(δ) over all Xj in class k

 q̂
(k)
i (δ) = ave

Xj∈ group k
q̂ij(δ)

• For each point, we obtain K functions (q̂
(1)
i (δ), . . . , q̂

(K)
i (δ))
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Example: Iris data

Iris data (Fisher, 1936); d = 4; K = 3, n = 150

only used classes 1 and 2
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Another example

gene expression data; d = 2000, n = 62, 2 classes (normal tissue
22, tumor tissue 40) Alon et al. 1999, PNAS

( http://genomics-pubs.princeton.edu/oncology/affydata/ )
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More information on depth quantile functions

Enhance understanding of our approach by relating it to

multidimensional scaling

Choquet capacities

shorth plot (one-dimensional case)
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Depth quantiles and multidimensional scaling

Observe: Given a line ` ⊂ Rd , depth quantile functions only depend
on number of points in cones (with axis of symmetry being `).

To determine whether a data point falls into a given circular cone,
all we need are two one-dimensional quantities (depending on line)

(signed) distance of projection onto line from x (Z x
1 )

distance to line (Z x
2 )

Used two-dimensional data: (Z x
1i ,Z

x
2i ), i = 1, . . . , n

 two-dimensional depth-quantile functions with x = 0;
exactly the same as depth quantile functions
based on original high-dimensional data

 spirit of multidimensional scaling
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Depth quantiles and multidimensional scaling

Given data, our construction gives

 
(n
2

)
different lines

 
(n
2

)
different (Z1,Z2)-plots

 
 
 
 

   
          Figure 3: First two classes of iris data 
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Depth quantiles and multidimensional scaling

 
 

 
 

   
 

               Figure 2:  Second and third classes of iris data 
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Depth quantiles and multidimensional scaling
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Depth quantiles in infinite dimensions

All the above only depends on dot-products

 can be applied to data in Hilbert space

• functional data

• kernelization

In particular:

Visualization of RKHS geometries
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Examples: Iris data
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Examples: Iris data
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Examples: Iris data
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Statistical inference based on averaged feature functions

Classification analysis using FDA

Avoid defining ‘features’ of depth quantile functions  FDA

For simplicity: binary classification problem, say classes 1 and 2.

for X ∗ to be classified find q̂
(1)
i (δ) and q̂

(2)
i (δ)

perform fPCA for each of these functions, keeping first p scores

 2p-dimensional vector of scores

already have n such 2p-dimensional vectors from training data (two
classes)

find classification rule (SVM; kernel SVM: etc.)

classify X ∗
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Illustration using wine data: Comparison to standard PCA
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Illustration on wine data

Using leave one out procedure we obtain

misclassifications for wine data

classes new method 1-NN

1,2 6 4
1,3 0 0
2,3 3 5
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Illustration on PIMA data set

n = 768; d = 8 covariate measurements on female Pima Indians

classification in diabetes positive/negative

Our method is competitive with all the others tested in Dutta et
al. (2015) (≈ 25% misclassification rate).

(LDA 23.37%, linear SVM 22.03%, radial SVM 24.19 %,kNN
25.73%, KDE 26.57 %, CART 27.20%, local depth based methods
25.18%)
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Illustration on cancer data

gene expression data; d = 2000, n = 62, 2 classes (normal tissue
22, tumor tissue 40) Alon et al. 1999, PNAS

( http://genomics-pubs.princeton.edu/oncology/affydata/ )
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Illustration on cancer data

leave-one-out classification gives:

• opening angle = 60 degrees: misclassification rate 22%

• opening angle = 85 degrees: misclassification rate 27.4%

(LDA 35.48%, linear SVM 16.38%, radial SVM 35.48 %, kNN
22.58%, KDE 64.52 %, CART 28.77%, local depth based methods
≈ 20%)
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Averaged feature functions and Choquet capacities

For this, we need some more notation:
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Versions with random ` and x

` determined by pair (Xi ,Xj)

x is chosen as midpoint Mij :=
Xi+Xj

2

d̂ij(s) = min
{
Fn(Aij(s)),Fn(Bij(s))

}
dij(s) = min

{
F (Aij(s)),F (Bij(s))

}
.

Then:
q̂ij(δ) = inf

{
t : G (s : d̂ij(s) ≤ t) ≥ δ

}
qij(δ) = inf

{
t : G (s : dij(s) ≤ t) ≥ δ

}
q̂
(k)
i (δ) = ave

Xj∈ group k
q̂ij(δ)

q
(k)
i (δ) = E(qij(δ)|Xj ∈ class k;Xi )

Note: Aij(s),Bij(s), dij(s), qij(δ) and q
(k)
i (δ) are random quantities!
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Averaged feature functions and Choquet capacities

The quantity q
(k)
i (δ) can be expressed as:

q
(k)
i (δ) = EXjP(Z ∈ Γij(δ)|Xi ), Z ∼ F , independent of Xi ,Xj

where Γij(δ) is a closed random set, whose distribution depends on the
distributions of Xi and Xj . Let

Ψ
(k)
i (z) = P(z ∈ Γij(δ)|Xi ), Xj ∈ group k

be the hitting function of the random set Γij(δ), given Xi .

Fubini  q
(k)
i (δ) = EFΨ

(k)
i (Z ) is the (conditional) expected value of

the hitting function.

Our method compares expected capacity functions of the random closed

sets Γij(δ) (given Xi ) for different distributions of the sets, determined by

the distributions of Xi and Xj . This is done for each δ.
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Some asymptotics

Assumptions.

(A1) F and G posses continuous, bounded densities f and g ,
respectively.

(A2) For every ε > 0 and every d there exists a set Rd(ε) ⊂ Rd of
diameter Rd(ε) , such that

(i) 0 ∈ Rd(ε)
(ii) Rd(ε) = O(d1/2), as d →∞;

(iii) F (Rd(ε)) > 1− ε for every d ;
(iv) there exists a constant c > 0, not depending on d , such that

supx∈Rd (ε) f (x) ≤ c .

(A3) sinα = 1− O( 1
d )

Extracting multiscale geometric information from high-dimensional and infinite-dimensional data with application to classification



Some asymptotics

Assumptions.

(A1) F and G posses continuous, bounded densities f and g ,
respectively.

(A2) For every ε > 0 and every d there exists a set Rd(ε) ⊂ Rd of
diameter Rd(ε) , such that

(i) 0 ∈ Rd(ε)
(ii) Rd(ε) = O(d1/2), as d →∞;
(iii) F (Rd(ε)) > 1− ε for every d ;
(iv) there exists a constant c > 0, not depending on d , such that

supx∈Rd (ε) f (x) ≤ c .

(A3) sinα = 1− O( 1
d )

Extracting multiscale geometric information from high-dimensional and infinite-dimensional data with application to classification



Some asymptotics

Proposition

Suppose that assumption (A1) holds, and that X1, . . . ,Xn, . . . are
iid from F . Then, for every given line ` ⊂ Rd , and every ε > 0,
there exist constants M and n0, not varying with d , such that

P
[

sup
x ,s∈`

∣∣√n(d̂x ,`(s)− dx ,`(s))
∣∣ > M

]
≤ ε, for n ≥ n0.
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Notation

Recall:

• Notation: Tx ,`(s) = arg min
C∈{Ax (s),Bx (s)}

{F (C )}.
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Some asymptotics

Theorem

Suppose that assumptions (A1) - (A3) hold. Let
Sx ,`(c) = {s ∈ ` : |F (Ax(s))− F (Bx(s))| ≥ c√

n
}. With Tx ,`(s) as

above, let Bx(s) = min
C∈Tx,`(s)

BF (C ). Then, for every ε > 0,

lim
c→∞

limsup
n→∞

P
[

sup
x ,s∈Sx,`(c)

∣∣√n(d̂x ,`(s)− dx ,`(s))−Bx(s)
∣∣ > ε

]
= 0.

Remark.

• This convergence is uniform in the dimension d .
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Recall

` determined by pair (Xi ,Xj)

x becomes midpoint Mij :=
Xi+Xj

2

dij(s) = min
{
F (Aij(s)),F (Bij(s))

}
d̂ij(s) = min

{
Fn(Aij(s)),Fn(Bij(s))

}
.

Further:
qij(δ) = inf

{
t : G (s : dij(s) ≤ t) ≥ δ

}
.

q̂ij(δ) = inf
{
t : G (s : d̂ij(s) ≤ t) ≥ δ

}
.

q
(k)
i (δ) = E(qij(δ)|Xj ∈ class k;Xi )

q̂
(k)
i (δ) = ave

Xj∈ group k
q̂ij(δ)

Note: Aij(s),Bij(s), dij(s), qij(δ) and q
(k)
i (δ) are random quantities!
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Some asymptotics

Theorem

Suppose that assumption (A1) holds. With

Dij(c) = {δ ∈ [0, 1] : srij(δ), s lij(δ) ∈ Sx ,`(c)},

we have

sup
1≤i<j≤n

sup
δ∈Dij (c)

|q̂ij(δ)− qij(δ)| = OP

(√min{d , log n}
n

)
.

Remarks:

• Upper bound of
( log n

n

)1/2
, independent of dimension d!

• If data lie in affine subspace of dimension d∗ ≤ d , then d can
be replaced by d∗.
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Some asymptotics

Conjecture

Suppose that (A1) - (A3) hold, and assume that

P(Xk /∈ Dij(c)|Xk in class k;Xi ) = oP(1/
√
n).

As nk →∞ (nk number of obs. in class k), then

sup
1≤i≤n

sup
δ∈[0,1]

∣∣∣q̂(k)i (δ)− q
(k)
i (δ)

∣∣∣ = OP

(√min{d , log n}
n

)
.

Same remarks as above apply.

Extracting multiscale geometric information from high-dimensional and infinite-dimensional data with application to classification



Some asymptotics

Conjecture

Suppose that (A1) - (A3) hold, and assume that

P(Xk /∈ Dij(c)|Xk in class k;Xi ) = oP(1/
√
n).

As nk →∞ (nk number of obs. in class k), then

sup
1≤i≤n

sup
δ∈[0,1]

∣∣∣q̂(k)i (δ)− q
(k)
i (δ)

∣∣∣ = OP

(√min{d , log n}
n

)
.

Same remarks as above apply.

Extracting multiscale geometric information from high-dimensional and infinite-dimensional data with application to classification



Open questions

• more on case of d →∞

• consider different Choquet functionals?

• investigate choice of tuning parameters

α (opening angle of cone)

G (distribution of cone tips)

• What if data lie on manifolds?

• For FDA classification: estimation of modes of variation
(Petersen and Müller, 2016)

•
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Illustration
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