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Multiscale feature extraction in multi-dimensions

Goals:

(i) present a method for extracting geometric information of the
underlying multivariate distribution;

(ii) accomplish (i) in a multiscale fashion;
(i) provide a tool for the visualization of geometric aspects of a
multivariate (or even infinite-dimensional) data set, and

(iv) show that the extracted features might be useful for inference
(classification).
Will will use notions of

e depth (Tukey depth)
e FDA
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Relations and inspirations

@ mass estimation (Ting et al. 2012)
@ shorth plot (Einmahl et al. 2010)

@ local depth (Agostinelli and Ramanazzi, 2011, Paindaveine
and van Bever, 2012, and Dutta et al., 2015)
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Some basic challenges in non-parametric learning

Choosing ‘right’ scale in large dimensions?
— Curse of dimensionality;

— right 'size’ of subsets; mass concentration

Where to look (for features) in large dimensions?

‘kernel-trick’ (non-linear methods; comput. advantage)

Challenge: Interpretability; how to choose kernel?

Choose a fixed tuning parameter or consider all values?
— SiZer, mode tree, persistent homology consider all values.

But: Limit cases are not meaningful.
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Basic idea

IDEA:

e Construct a feature map driven by
(in contrast to RKHS-type);

e Features are real-valued functions on [0, 1] that

thus can be plotted ~~

contain geometric information ~~
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Wine data

from UC Irvine Machine Learning Repository.
177 observations in 13 dimensions

3 classes (labeled) [58 in class 1, 70 class 2, 49 class 3]
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Feature functions for wine data

depthity functions for wine data: point 1 vs class 1
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Feature functions for 13-dimensional wine data

depthity functions for wine data: point 1 vs classes 1 and 3
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Feature functions for 13-dimensional wine data

depthity functions for wine data: point 1 vs classes 1 and 2

o
=<}
o
©
=
=
j=3
D o
= <5
o
394
o -
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
o

Extracting multiscale geometric information from high-dimensic




Feature functions for 13-dimensional wine data

depthity functions for wine data: point 1 vs classes 1 and 2
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Multiscale feature extraction

Novel idea (inspired by Ting et al. 2012):

e Define a distribution of depths for a given point x
~~ corresponding quantile functions gx(4), 0 < 4§ <1,

are feature functions.

e Distribution of depths is constructed by randomly selecting
subsets containing x, and finding depths of x within these
subsets.

We propose to use (circular) cones as basic subsets.
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Multiscale feature extraction

Different scales:

e small quantiles ~~ local information (density)

@ large quantiles ~ global information (depth)
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Multiscale feature extraction

Different scales:

e small quantiles ~~ local information (density)

@ large quantiles ~ global information (depth)

e intermediate quantiles? (How important are they for high
dimensions?)

~» multiscale (scale given by quantile level)
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Depth quantile functions

Intuition:

‘Sit at a (data) point and look in one direction’ - depth
quantile function describes aspects of topographical
information of what can be seen.
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Depth quantile functions

Intuition:

‘Sit at a (data) point and look in one direction’ - depth
quantile function describes aspects of topographical
information of what can be seen.

QUESTION: How to find relevant directions?
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Construction of depth quantile functions
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Construction of depth quantile functions
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Construction of depth quantile functions
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Construction of depth quantile functions
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Construction of depth quantile functions
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Construction of depth quantile functions

-
-
-
-
p— -
_--___"___x_,__.——-—"_x:'- o
e ————— X L /
—_— X X “,f"x '
N t XX 7 x
K £ \'x 7/
% X - W X
\ 2 ‘\ \\ //x x
Q Fy N x
\ : | . x
S o
Q Lo By 3 7
e e AN Y
N LAY
PG RSN /
% \\\‘\ o 3 N /
e N R
\
- AN W o/
- \ A ‘o 4 0o o
- A \ V
\ \ Y , o
\ Ny y °
“’k \\o L 2N Vs
S o
6 s
s
4

Extracting multiscale geometric information from high-dimensic



Construction of depth quantile functions
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Construction of depth quantile functions
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@ opening angle « fixed
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Population versions

Given a line £ € R and s, x € £, let Cx(s) denote a cone with
@ opening angle « fixed
@ tipinse/
o x € Ci(s)
tip s moves in both directions away from x, such that x € C.(s).

Split cone into two parts at x:

@ Ay(s) subcone of C(s) with x the midpoint of its base,
o By(s) = Cu(s) \ Ax(s) (‘frustum’)
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Population versions

Given a line £ € R and s, x € £, let Cx(s) denote a cone with
@ opening angle « fixed
@ tipinse/
o x € Ci(s)
tip s moves in both directions away from x, such that x € C.(s).

Split cone into two parts at x:

@ Ay(s) subcone of C(s) with x the midpoint of its base,
o By(s) = Cu(s) \ Ax(s) (‘frustum’)
Let
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How do these depth functions look like as a function of s7
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Examples

functions dy(s) for Beta(1,2)
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Depth quantile functions

Choose cone tip s randomly, i.e let on £. Consider the cdf
of dy ¢(5)

P(dxo(5) <t)=G(s €l :dey(s) < t).

)
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Depth quantile functions

Choose cone tip s randomly, i.e let on £. Consider the cdf
of dy ¢(5)

P(dxo(5) <t)=G(s €l :dey(s) < t).

)

and set

Ge0(6) =inf{t: G(s:dxe(s)) <t) >0}
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Depth quantile functions

Choose cone tip s randomly, i.e let on £. Consider the cdf

of dy ¢(5)
P(dxo(5) <t)=G(s €l :dey(s) < t).

and set

Ge0(6) =inf{t: G(s:dxe(s)) <t) >0}

od

put all depth functions onto same ‘scale’
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Examples

functions dy(s) for Beta(1,2)
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Questions

@ What information is contained in depth quantile functions?

@ How to use for statistical inference?
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Information contained in depth quantile functions
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Information contained in depth quantile functions

o lims_y1 gx¢(6) = "Tukey depth of x among projections of
data onto ¢";
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Information contained in depth quantile functions

o lims_y1 gx¢(6) = "Tukey depth of x among projections of
data onto ¢";

G0l) _ - F(x) , where C is known (localization)

ad g(x)
f, g are densities of F and G.
“multiscale”
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Empirical versions are obtained

e by replacing F by the empirical distribution Fp;
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e by replacing F by the empirical distribution Fp;

e for each pair (Xj, X;), considering the line ¢;; passing through
both X; and X
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Empirical versions

Empirical versions are obtained

e by replacing F by the empirical distribution Fp;

e for each pair (Xj, X;), considering the line ¢;; passing through
both X; and X

. Xi+X;
o letting x = %

Resulting empirical depth quantile functions are denoted by g;;(¢).
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Empirical versions

Empirical versions are obtained

e by replacing F by the empirical distribution Fp;

e for each pair (Xj, X;), considering the line ¢;; passing through
both X; and X

. Xi+X;
o letting x = %

Resulting empirical depth quantile functions are denoted by g;;(¢).

Computation: Embarrassingly parallelizable (if needed).
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Averaged feature functions

Suppose, for each pair (X;, X;), we have Gj;(8) ~ () feature
functions.

Reduce total number of functions by averaging.

Extracting multiscale geometric information from high-dimensic



Averaged feature functions

Suppose, for each pair (X;, X;), we have Gj;(8) ~ () feature
functions.

Reduce total number of functions by averaging.

depthity functions for wine data: point 1 vs classes 1 and 3
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Averaged feature functions

K > 1 classes
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Averaged feature functions

K > 1 classes

e For each fixed X;, average gj;(d) over all X; in class k

w g = ave g;(o)

X;€ group k
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Averaged feature functions

K > 1 classes

e For each fixed X;, average gj;(d) over all X; in class k

w g = ave g;(o)

X;€ group k

e For each point, we obtain K functions (65”((5), ce afK)(é))
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Example: Iris data

Iris data (Fisher, 1936); d = 4; K =3, n =150
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Example: Iris data

Iris data (Fisher, 1936); d = 4; K =3, n =150

only used classes 1 and 2

Iris data (first two classes), linear

q(dete)

delta
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her example
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Another example

gene expression data; d = 2000, n = 62, 2 classes (normal tissue
22, tumor tissue 40) Alon et al. 1999, PNAS

( http://genomics-pubs.princeton.edu/oncology/affydata/ )
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Another example

gene expression data; d = 2000, n = 62, 2 classes (normal tissue
22, tumor tissue 40) Alon et al. 1999, PNAS

( http://genomics-pubs.princeton.edu/oncology/affydata/ )

Cancer Data

d(q)
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More information on depth quantile functions
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More information on depth quantile functions

Enhance understanding of our approach by relating it to
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More information on depth quantile functions

Enhance understanding of our approach by relating it to

e multidimensional scaling
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More information on depth quantile functions

Enhance understanding of our approach by relating it to

e multidimensional scaling

o Choquet capacities
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More information on depth quantile functions

Enhance understanding of our approach by relating it to

e multidimensional scaling
o Choquet capacities

@ shorth plot (one-dimensional case)
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Depth quantiles and multidimensional scaling
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Depth quantiles and multidimensional scaling

Observe: Given a line ¢ C RY, depth quantile functions only depend
on number of points in cones (with axis of symmetry being /).

Extracting multiscale geometric information from high-dimensic



Depth quantiles and multidimensional scaling

Observe: Given a line ¢ C RY, depth quantile functions only depend
on number of points in cones (with axis of symmetry being /).

To determine whether a data point falls into a given circular cone,
all we need are two one-dimensional quantities (depending on line)
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Depth quantiles and multidimensional scaling

Observe: Given a line ¢ C RY, depth quantile functions only depend
on number of points in cones (with axis of symmetry being /).

To determine whether a data point falls into a given circular cone,
all we need are two one-dimensional quantities (depending on line)

o (signed) distance of projection onto line from x (Z;)

e distance to line (Z5)
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Depth quantiles and multidimensional scaling

Observe: Given a line ¢ C RY, depth quantile functions only depend
on number of points in cones (with axis of symmetry being /).

To determine whether a data point falls into a given circular cone,
all we need are two one-dimensional quantities (depending on line)

o (signed) distance of projection onto line from x (Z;)

e distance to line (Z5)

Used two-dimensional data: (Z3$,25), i=1,...,n

~~ two-dimensional depth-quantile functions with x = 0;
exactly the same as depth quantile functions
based on original high-dimensional data

~» spirit of multidimensional scaling
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Depth quantiles and multidimensional scaling

Given data, our construction gives
mo. )
~ (2) different lines

~ (5) different (Zy, Z»)-plots
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Depth quantiles and multidimensional scaling

Given data, our construction gives
mo. )
~ (2) different lines

~ (5) different (Zy, Z»)-plots

AR |-
Figure 3: First two classes of iris data
different class same class
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Depth quantiles and multidimensional scaling
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Figure 2: Second and third classes of iris data

different class same class
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Depth quantiles and multidimensional scaling

Wine Data (points 5 and 7)
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Depth quantiles in infinite dimensions
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Depth quantiles in infinite dimensions

All the above only depends on dot-products

~= can be applied to data in Hilbert space
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Depth quantiles in infinite dimensions

All the above only depends on dot-products

~= can be applied to data in Hilbert space

e functional data
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Depth quantiles in infinite dimensions

All the above only depends on dot-products

~= can be applied to data in Hilbert space

e functional data

e kernelization
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Depth quantiles in infinite dimensions

All the above only depends on dot-products

~= can be applied to data in Hilbert space

e functional data

e kernelization

In particular:

Visualization of RKHS geometries
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Examples:

Iris data
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IRIS(Se vs Ve) RBF(sigma=.5), 1v50
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Examples: Iris data

IRIS(Se vs Ve) RBF(sigma=10), 1v50
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Examples: Iris data

IRIS(Se vs Ve) RBF(sigma=100), 1v50
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Examples: Iris data

IRIS(Se vs Ve) RBF(sigma=.5)

35
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Examples: Iris data

IRIS(Se vs Ve) RBF(sigma=10)
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Examples: Iris data

IRIS(Se vs Ve) RBF(sigma=100)
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Examples: Iris data

Iris data (first two classes), linear
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Examples: Iris data

Polynomial (c=1, d=2) Kernel
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Examples: Iris data

Polynomial (c=1, d=5) Kernel
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Statistical inference based on averaged feature functions

Classification analysis using FDA
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Statistical inference based on averaged feature functions

Classification analysis using FDA

Avoid defining ‘features’ of depth quantile functions ~~ FDA
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Statistical inference based on averaged feature functions

Classification analysis using FDA
Avoid defining ‘features’ of depth quantile functions ~~ FDA

For simplicity: binary classification problem, say classes 1 and 2.

@ for X* to be classified find 651)(5) and 652)(5)
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Statistical inference based on averaged feature functions

Classification analysis using FDA
Avoid defining ‘features’ of depth quantile functions ~~ FDA
For simplicity: binary classification problem, say classes 1 and 2.

@ for X* to be classified find 651)(5) and 652)(5)

@ perform fPCA for each of these functions, keeping first p scores
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Statistical inference based on averaged feature functions

Classification analysis using FDA

Avoid defining ‘features’ of depth quantile functions ~~ FDA

For simplicity: binary classification problem, say classes 1 and 2.
@ for X* to be classified find 651)(5) and 652)(5)

@ perform fPCA for each of these functions, keeping first p scores

@ ~~ 2p-dimensional vector of scores
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Statistical inference based on averaged feature functions

Classification analysis using FDA
Avoid defining ‘features’ of depth quantile functions ~~ FDA
For simplicity: binary classification problem, say classes 1 and 2.
@ for X* to be classified find 651)(5) and 652)(5)
@ perform fPCA for each of these functions, keeping first p scores

@ ~~ 2p-dimensional vector of scores

@ already have n such 2p-dimensional vectors from training data (two
classes)
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Statistical inference based on averaged feature functions

Classification analysis using FDA
Avoid defining ‘features’ of depth quantile functions ~~ FDA

For simplicity: binary classification problem, say classes 1 and 2.

@ for X* to be classified find 651)(5) and 652)(5)

perform fPCA for each of these functions, keeping first p scores

~> 2p-dimensional vector of scores

already have n such 2p-dimensional vectors from training data (two
classes)

@ find classification rule (SVM; kernel SVM: etc.)
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Statistical inference based on averaged feature functions

Classification analysis using FDA
Avoid defining ‘features’ of depth quantile functions ~~ FDA

For simplicity: binary classification problem, say classes 1 and 2.

@ for X* to be classified find 651)(5) and 652)(5)
@ perform fPCA for each of these functions, keeping first p scores
@ ~~ 2p-dimensional vector of scores

@ already have n such 2p-dimensional vectors from training data (two
classes)

@ find classification rule (SVM; kernel SVM: etc.)
@ classify X*
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lllustration using wine data: Comparison to standard PCA

first two fPCA scores color coded by class
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[llustration on wine data

Using leave one out procedure we obtain

misclassifications for wine data

classes new method 1-NN
1,2 6 4
1,3 0 0
2,3 3 5
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[llustration on PIMA data set
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[llustration on PIMA data set

n = 768; d = 8 covariate measurements on female Pima Indians

classification in diabetes positive/negative
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[llustration on PIMA data set

n = 768; d = 8 covariate measurements on female Pima Indians
classification in diabetes positive/negative

Our method is competitive with all the others tested in Dutta et
al. (2015) (= 25% misclassification rate).

(LDA 23.37%, linear SVM 22.03%, radial SVM 24.19 %,kNN
25.73%, KDE 26.57 %, CART 27.20%, local depth based methods
25.18%)
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[llustration on cancer data

gene expression data; d = 2000, n = 62, 2 classes (normal tissue
22, tumor tissue 40) Alon et al. 1999, PNAS

( http://genomics-pubs.princeton.edu/oncology/affydata/ )

Extracting multiscale geometric information from high-dimensic



[llustration on cancer data

leave-one-out classification gives:

e opening angle = 60 degrees: misclassification rate 22%

e opening angle = 85 degrees: misclassification rate 27.4%

(LDA 35.48%, linear SVM 16.38%, radial SVM 35.48 %, kNN
22.58%, KDE 64.52 %, CART 28.77%, local depth based methods
~ 20%)
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Averaged feature functions and Choquet capacities
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Averaged feature functions and Choquet capacities

For this, we need some more notation:
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Versions with random ¢ and x
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Versions with random ¢ and x

@ ¢ determined by pair (Xj, X;)
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Versions with random ¢ and x

@ ¢ determined by pair (Xj, X;)

, N Xi+X;
@ x is chosen as midpoint Mj; := %
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Versions with random ¢ and x

@ ¢ determined by pair (Xj, X;)

, N Xi+X;
@ x is chosen as midpoint Mj; := %

di(s) = min { Fa(As(5)), Fa(By(s))}
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Versions with random ¢ and x

@ ¢ determined by pair (Xj, X;)

@ x is chosen as midpoint Mj; := %
dj(s) = min { Fa(Aj(s)). Fa(B;(s))}
d;(s) = min {F(A;(s)). F(Bj(s))}-
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Versions with random ¢ and x

@ ¢ determined by pair (Xj, X;)

Xi+X;

@ x is chosen as midpoint M := =5

di(s) = min { Fa(As(5)), Fa(Bj(5))}
dj(s) = min { F(A;(s)), F(B;(s))}.

Then:
gij(6) =inf{t: G(s: d > 6}
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Versions with random ¢ and x

@ ¢ determined by pair (Xj, X;)

@ x is chosen as midpoint Mj; := %

dij(s) = min { Fo(A;(s)), Fa(Bj(s)
d;(s) = min {F(A;(s)). F(Bj(s))}-

—— ~—

Then:
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Versions with random ¢ and x

@ ¢ determined by pair (Xj, X;)

Xi+X;

@ x is chosen as midpoint M := =5

dj(s) = min {Fa(A;(s)), Fa(Bj(s))}
dj(s) = min {F(A;(s)), F(Bj(s))}-
Then:
Gi(0) = inf {t: G(s: dy(s) < t) > 6}
dj(s) <t >5}

~NK) (s ~
h () — ave .. (S
ai ( ) X;e ;lg;\rc(mp qu( )

q,(k (6) = E(q;(9)|X; € class k; X;)

Extracting multiscale geometric information from high-dimensic



Versions with random ¢ and x

@ ¢ determined by pair (Xj, X;)

Xi+X;

@ x is chosen as midpoint M := =5

dj(s) = min {Fa(A;(s)), Fa(Bj(s))}
dj(s) = min {F(A;(s)), F(Bj(s))}-
Then:
Gi(0) = inf {t: G(s: dy(s) < t) > 6}
dj(s) <t >5}

(k) .
(0) = ave (0
ai ( ) X;e ;lg;\rc(mp qu( )

q,(k (6) = E(q;(9)|X; € class k; X;)

Note: Aji(s), Bji(s), dj(s), gj(6) and q( )(5) are random quantities!
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Averaged feature functions and Choquet capacities

Extracting multiscale geometric information from high-dimensic



Averaged feature functions and Choquet capacities

(k)

The quantity g;"’(J) can be expressed as:

6/9(8) = ExP(Z € Tj(9)|X)),  Z ~ F, independent of X;, X;

where [;(0) is a closed random set, whose distribution depends on the
distributions of X; and X;.
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Averaged feature functions and Choquet capacities

(k)

The quantity g;"’(J) can be expressed as:

6/9(8) = ExP(Z € Tj(9)|X)),  Z ~ F, independent of X;, X;

where [;(0) is a closed random set, whose distribution depends on the
distributions of X; and X;. Let

\Ilgk)(z) = P(z e Tjj(0)|Xi), X; € group k

be the hitting function of the random set I';;(4), given X.
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Averaged feature functions and Choquet capacities

(k)

The quantity g;"’(J) can be expressed as:

6/9(8) = ExP(Z € Tj(9)|X)),  Z ~ F, independent of X;, X;

where [;(0) is a closed random set, whose distribution depends on the
distributions of X; and X;. Let

\Ilgk)(z) = P(z e Tjj(0)|Xi), X; € group k

be the hitting function of the random set I';;(4), given X.

Fubini ~» q,(k)(é) = Eplllgk)(Z) is the (conditional) expected value of

the hitting function.
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Averaged feature functions and Choquet capacities

(k)

The quantity g;"’(J) can be expressed as:

6/9(8) = ExP(Z € Tj(9)|X)),  Z ~ F, independent of X;, X;

where [;(0) is a closed random set, whose distribution depends on the
distributions of X; and X;. Let

\Ilgk)(z) = P(z e Tjj(0)|Xi), X; € group k

be the hitting function of the random set I';;(4), given X.

Fubini ~» q,(k)(é) = EF\IIEk)(Z) is the (conditional) expected value of
the hitting function.

Our method compares expected capacity functions of the random closed
sets [';;(0) (given X;) for different distributions of the sets, determined by
the distributions of X; and Xj. This is done for each 6.
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Some asymptotics
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Some asymptotics

Assumptions.

(A1) F and G posses continuous, bounded densities f and g,
respectively.
(A2) For every € > 0 and every d there exists a set Rg(¢) C R? of
diameter Ry(€) , such that
(i) 0 € Ra(e)
i) Ra(e) = O(d*/?), as d — oo;
(i) F(Ra(€)) > 1 — e for every d;
(iv) there exists a constant ¢ > 0, not depending on d, such that
SUPxeR4(e) f( ) <c

(A3) sina=1-0(3)
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Some asymptotics

Proposition

Suppose that assumption (A1) holds, and that Xi,...,X,,... are
iid from F. Then, for every given line { C RY, and every e > 0,
there exist constants M and ng, not varying with d, such that

P[ sup }\/E(C//\X’Z(S) — dyy(s))| > M} <e€, for n> ng.

x,5€L
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Recall:




Notation

Recall:

“s

-

-
b
A

e Notation: T ,(s)= argmin {F(C)}
Ce{Ax(s),Bx(s)}
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Some asymptotics

Theorem

Suppose that assumptions (A1) - (A3) hold. Let

Sxi(c) ={s € l:|F(Ax(s)) — F(B«(s))| > %} With Ty (s) as
above, let By(s) = Cerﬂr}in Bg(C). Then, for every e > 0,

x,\S

lim limsup P[  sup )’ﬁ(c?x,g(s)—dxfg(s))—IB%X(s)‘ >¢] =0.

E=res n—o00 x,5€54 ¢(c
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Some asymptotics

Theorem

Suppose that assumptions (A1) - (A3) hold. Let

Sxi(c) ={s € l:|F(Ax(s)) — F(B«(s))| > %} With Ty (s) as
above, let By(s) = Cerﬂr}in Bg(C). Then, for every e > 0,

x,\S

lim limsup P[  sup )’ﬁ(c?x,g(s)—dxfg(s))—IB%X(s)‘ >¢] =0.

E=res n—o00 x,5€54 ¢(c

REMARK.
e This convergence is uniform in the dimension d.
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Recall

iscale geometri



Recall

@ ¢ determined by pair (Xj, X;)
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Recall

@ ¢ determined by pair (Xj, X;)

_ XitX
2

@ x becomes midpoint Mj; :=
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Recall

@ ¢ determined by pair (Xj, X;)

c Xi+X;
@ x becomes midpoint Mj; := %

dj(s) = min {F(A;(s)). F(Bj(s))}
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Recall

@ ¢ determined by pair (Xj, X;)
@ x becomes midpoint Mj; := %

dij(s) = min {F(A;(s)), F(Bj(s))}
dij(s) = min { F(Ayi(s)), Fa(Bii(s)) } -
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Recall

@ ¢ determined by pair (Xj, X;)
@ x becomes midpoint Mj; := %
dj(s) = min { F(A;(s)). F(By(s))}
dj(s) = min { Fs(A;(s)), Fa(Bi(s))}-
Further:
qi(6) = inf {t: G(s: dj(s) < t)>6}.
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Recall

@ ¢ determined by pair (Xj, X;)
@ x becomes midpoint Mj; := %
dj(s) = min { F(A;(s)). F(By(s))}
dj(s) = min { Fs(A;(s)), Fa(Bi(s))}-
Further:
qi(6) = inf {t: G(s: dj(s) < t)>6}.
gij(6) =inf{t: G(s:dj(s) <t)>
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Recall

@ ¢ determined by pair (Xj, X;)
@ x becomes midpoint Mj; := X%

dij(s) = min {F(A;(s)), F(Bj(s))}
dij(s) = min { F(Ayi(s)), Fa(Bii(s)) } -

Further:
q,-j((5):inf{t: ci(S)S )25}-
fq\,-j(é):inf{t: s djj(s) < )2(5}

Q,(k)((s) = E(q;(0)|X; € class k; X))

a(k)((g) — ave 6,;(5)

X;€ group k
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Recall

@ ¢ determined by pair (Xj, X;)
@ x becomes midpoint Mj; := X%

dij(s) = min {F(A;(s)), F(Bj(s))}
dij(s) = min { F(Ayi(s)), Fa(Bii(s)) } -

Further:
q,-j((5):inf{t: ci(S)S )25}-
fq\,-j(é):inf{t: s djj(s) < )2(5}

Q,(k)((s) = E(q;(0)|X; € class k; X))

a(k)((g) — ave 6,;(5)

X;€ group k

Note: Aji(s), Bji(s), dj(s), gj(d) and q( )(5) are random quantities!
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Some asymptotics

Suppose that assumption (A1) holds. With

Dj(c) = {8 € [0,1] : s{(6), 5(8) € Sxe(c)},

we have

~ min{d, log n
sup_ sup Iqu(é)*qu@)\:OP(\/{i} )
1<i<j<n §eDj(c) n
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Some asymptotics

Suppose that assumption (A1) holds. With

Dj(c) = {8 € [0,1] : s{(6), 5(8) € Sxe(c)},

we have

2 min{d, log n
sup  sup qu(é)qﬁ(a):op(,ﬁ)'
1<i<j<n §eDj(c) -

Remarks:

e Upper bound of (IO%):[/2

, independent of dimension d!
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Some asymptotics

Suppose that assumption (A1) holds. With

Dj(c) = {8 € [0,1] : s{(6), 5(8) € Sxe(c)},

we have

2 min{d, log n
sup  sup qu(é)qﬁ(a):op(,ﬁ)'
1<i<j<n §eDj(c) -

Remarks:

"’%)1/2, independent of dimension d!

e Upper bound of (

e |If data lie in affine subspace of dimension d* < d, then d can
be replaced by d*.
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Some asymptotics

Suppose that (A1) - (A3) hold, and assume that

P(Xk ¢ Djj(c)| X in class k; X;) = op(1/+/n).

As nx — oo (ng number of obs. in class k), then

(K) /- min{d, logn
sup sup qfk)(()) — qfk)(ﬁ)) = OP('\/ min{d log n} )
1<i<n 6€[0,1] n
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Some asymptotics

Suppose that (A1) - (A3) hold, and assume that

P(Xk ¢ Djj(c)| X in class k; X;) = op(1/+/n).

As nx — oo (ng number of obs. in class k), then

(K) /- min{d, logn
sup sup qfk)(()) — qfk)(ﬁ)) = OP('\/ min{d log n} )
1<i<n 6€[0,1] n

Same remarks as above apply.
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Open questions

e more on case of d — >

e consider different Choquet functionals?
e investigate choice of tuning parameters
e « (opening angle of cone)
e G (distribution of cone tips)
e What if data lie on manifolds?
e For FDA classification: estimation of modes of variation
(Petersen and Miiller, 2016)
[ ]
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[llustration




