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Chapter 11:  Unusual and Influential Data  

11.1 Outliers, Leverage, and Influence 

Figure 11.1 

 
In regression, and outlier is an observation whose response variable value is conditionally unusual given the values 

of the explanatory variables.  (a) point with low leverage and little influence on regression; (b) point with high 

leverage and high influence; (c) point with high leverage but low influence. 
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Influence on coefficients = Leverage × Discrepancy 

Figure 11.2 

 

11.2 Assessing Leverage:  the hat values 

Recall the Hat Matrix: 

• The Hat Matrix: 
1( )t tH X X X X−=  

• It's a projection matrix: 
1ˆˆ ( )t tY X X X X X Y HYβ −= = =  

• So, it is idempotent ( HH H= ) and symmetric ( tH H= ) 

• And, ˆ ( )E Y Y Y HY I H Y= − = − = − , where ( )I H−  is also a 

projection matrix 
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=∑ , so hij  tells us the contribution of the i
th

 observation to the j
th

 fitted value.  Because  H HH= , the 

diagonal elements of H are ' 2

1

n

i ii i i ijj
h h h

=
≡ = =∑h h , which summarizes the potential influence or leverage of  iY  on 

all the fitted values.  These hat-values  satisfy (1 1)in h≤ ≤   and the average hat-value is ( 1) /h k n= +  where  k  is 

the number of explanatory variables (excluding the intercept). 

 

[Note:  the upper bound on the hi  is actually 1/ci , in general, where ci is the number of times that the ith row of  X,  

xi , is replicated.] 

 

For simple linear regression it is easy to show that 
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Using the multiple regression model in matrix notation in mean-centered form:  
* *

1= +y X β εwhere { }*
iY Y≡ −y  

and { }*
ij jX X≡ −X  and 1β  is the vector of regression coefficients without the intercept, the hat-value for the i

th
 

observation is 

 

* *' * *' *' * * 1
( )i i i i i ih h

n
= = = −h h x X X x
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Figure 11.3  Elliptical contours of constant leverage (constant hat-values  hi)  for k=2 explanatory variables. 

 

Note the differences between the two high leverage points: 

- one is  has the highest value on both 1X  and 2X , although 

it is not too extreme on either 

- the other is not extreme on either 1X  or 2X  

 

So, leverage cannot be judged by examining simple histograms.  

In fact you might not be able to see influential points even in 

scatterplots of two variables at a time. 
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Figure 11.4   For the regression of 

Duncan’s prestige data on education 

and income: (a) index plot of hat-

values, (b) contours of constant 

leverage, with reference lines at 2×h  

and 3×h .  In (b) the dashed lines are 

part of elliptical contours. 

 

 

11.3 Detecting Outliers:  “Studentized” residuals?  

Another use of the hat matrix. 

• ˆ ( )E Y Y Y HY I H Y= − = − = − , where ( )I H−  is also a projection matrix, so 

• 2var( ) var(( ) ) ( ) var( )( ) ( )TE I H Y I H Y I H I H σ= − = − − = −  

• Standardized Residuals: 

  
1

i
i

ii

E
E

s h
′ =

−
  ,   

so we see that the residuals do not have equal variances even though we assume that the true errors iε  do 

have equal variances.  Standardized residuals are useful, but the numerator is not independent of the 

denominator, so iE ′  cannot follow a t-distribution, which would be nice to judge the magnitude of a residual 
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• Studentized Residuals: 

T  
*

1
i

i

i ii

E
E

s h−

=
−

 

Text provides an equation showing that ( )2*
iE  is a monotonic transformation of  ( )2'

iE . 

Text also notes that these studentized residuals can be derived from a model with a mean-shift for the ith 

observation and 
*

2i n kE t − −∼  which we can use for testing the significance of a particular residual, but we must 

correct for multiple testing---picking the biggest residual to test---using a Bonferroni correction.  I.e. test with an α-

level of, for example, .05/k, or equivalently report the p-value as k×(the usual p-value). 

Note that although these studentized residuals are based on a fit to all the data; they are related to the 

• Leave-one-out Residuals: 

 
'

( ) ( )
ˆ

1
i

i i i i
ii

E
E y

h− −= − =
−

x β  

So the (externally) studentized residuals also represent the “studentization” of these leave-one-out residuals that 

go into the predictive error sum of squares (PRESS). 

( )*
1/2/ (1 )

i
i

i ii

E
E

s h
−

−

=
−
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11.4 Measuring  Influence 

 

 ( )
ˆ ˆ , 1, , and  1, , .ij ij j j iD DFBETA i n j kβ β −= = − = =… …  

 
*

( ) ( )
ij

ij ij
i j

D
D DFBETAS

SE β−

= =  

See sect 11.5 for rule-of-thumb cutoffs of  2 / n±  

Fig 11.6  Index plots of 
*
ijD  
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Cook’s measure of “distance” derives from the form of an F-statistic comparing β̂  with ( )
ˆ

iβ − , or the evaluation of 

( )
ˆ

iβ −  with respect to confidence ellipsoids for β̂ : 
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+
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=
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X X

 

  

So we see that high “influence” according to Cook’s D comes from a combination of a large residual with high 

leverage.  Belsley, Kuh and Welsh proposed a similar measure defined in terms of the studentized residuals  
* (1 )i i i iDFFITS E h h= −  
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[See R code] 

There are also measures called “COVRATIO” to measure influence on collinearity, but we won’t bother with these. 

See section 11.5.3 for discussion of suggested cutoffs for paying attention to large values of influence measures.  

One for Cook’s D, based on the analogy with F-statistics, is 4 / ( 1)iD n k> − − . 
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## Standard R diagnostic plots 
windows() 
par(mfrow=c(2,3)) 
plot(duncan.mod,which=1:6)   
# All the diagnostic plots; default: which=c(1:3,5) 
# Contours of standardized residuals drawn on 6th plot. 
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11.5 Joint Influence 

All of these influence measures refer to the influence of individual points.  It is much more complicated when there 

are groups of influential points (where the influence of one point in a group is masked by the others).  

Generalizations to multiple influential points are possible but not very practical.  At this point Fox introduces 

“Added Variable Plots”  for graphical assessment (which I would normally have introduced much earlier). 

The idea:  we can graphically assess the influence of 

extreme observations in 2D scatters.  Look at 2D scatters 

that represent the computation of partial regression 

coefficients. 

In Fox’s notation (not my preference): 

(1)
2Residual( , , )i i kY Y X X= … , residuals of the regression 

on all but X1. 

(1)
1 2Residual( , , )i i kX X X X= … , residuals of regression of 

X1 on the rest  

 

 

Fig 11.7  Jointly influential data in simple linear 

regression. 
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The scatterplot and regression of 
(1)

iY  on 
(1)
iX provides a complete understanding of the partial regression 

coefficient 1̂β . 

1. Slope of regression of 
(1)

iY  on 
(1)
iX  (without intercept) is 1̂β  

2. Residuals of regression of 
(1)

iY  on 
(1)
iX  are the same as the residuals from the full multiple regression 

3. Standard error of 1̂β  from this simple (“auxiliary”)  regression, 
(1)2

1̂( ) E iSE S Xβ = ∑ , is the same as the std 

error of 1̂β  in the full multiple regression. 

So, we can examine these added variable  (or partial-regression)  plots to assess influence as we would in 

examining Fig 11.7. 

Fig 11.8 

 

 

[See R code] 

 


