Chapter 4: Transforming Data

Aims:

e make distributions (more) symmetric)
e linearize scatterplot relationships (why?)
e stabilize (make equal) variances across multiple groups

4.1 The Family of Powers and Roots

Power transformations: X — XP°

It turns out to be useful to have a family of power transformations defined slightly differently so that we can
consider the limit of power transformations for p — 0. We introduce the

XP-1
p

Box-Cox family of transformations: X — X (" =

Note that all transformations at the value X =1
e have value 0
e have slope 1

e dividing by p preserves the direction of X when p is negative



Fig. 4.1 Family of power transformation X
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All of these deal with positively skewed distributions.



I 4.2 Transforming Skewness

The text discusses first transforming skewness (4.2), then transforming nonlinearity (4.3) and finally
transforming nonconstant spread (4.4). The latter is most important, but we’ll quickly review the figures for the
first skewness and nonlinearity.

Fig 4.2 Infant mortality data (which we have already examined with histograms and gqg-plots)
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Figs. 4.3 and 4.4: Trial and error choice of transformation
Infant Mortality Rate (per 1000}
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Note that for Fig 4.4 we plotted the log of Infant Mortality rate, added a “rug” of data values below it, and
added an axis of the original scale on top using the function power .axis from the car package. This is a cool
thing to do, but | won’t expect you to figure out how to do it.



|4.2 Transforming Nonlinearity

Why bother?

~

e Linear relationships, Y = A+ BX, are simple and easily interpreted

e When dealing with multple explanatory variables, it is quite difficult to deal multiple nonlinear relationships
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Fig 4.5 How should we choose whether to linearize by plotting
JY vs. X or Y vs. X27?




Fig 4.7. Tukley and Mosteller’s bulging rule: The direction of the bulge indicates the directin of the power
transformation ofY and/or X to straighten the relationship between them.
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Figs. 4.8 & 4.9 Prestige vs. Income: tranform Prestige “up” or Income “down”
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Figs. 4.10 & 4.11 Infant mortality vs GDP
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With both variables expressed on a log scale, the slope of -0.49 means that a 1% increase in per capita GDP is
associated with a 0.49% decrease in infant mortality rate. A regression coefficient for this type of log-log
relationship is called an “elasticity”.



I 4.3 Transforming Nonconstant Spread

Differences in spread (variance) are often systematically related to differences in level (mean).

Suggested: For grouped data, plot log(hinge-spread) vs log(median). [The “hinge-spread” is essentially the inter-
guartile range (IQR), an alternative “robust” estimate of spread in comparison with the standard deviation.]

If the plot is reasonably characterized as a line (plus noise): logspread ~ a+bloglevel, the spread-stabilizing
transformation uses the power p=1-Db. Let’s compute thisin R. Note: Fox adds 1 to interlocks because there are
some zero values. However, it is not necessary to do so to compute medians and IQR, only to compute logs of

observations.
Fig4.12
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> nation.med <- tapply(interlocks+1l,nation,median)

nation.lq <-
tapply(interlocks+1,nation,quantile, .25)

nation.uq <-
tapply(interlocks+1,nation,quantile, .75)

nation.iqr <- nation.uqg-nation.lIq

> plot(log(nation.med), log(nation.iqgr))
> coef(Im(log(nation.iqr) ~ log(nation.med)))

(Intercept) log(nation.med)
0.8530828 0.7958663

abline(coef(Im(log(hation.iqgr) -~
log(nation.med))))




Suggested transformationis p ~0.2. So, take fourth root? cube root? log? R code in car library produces a
slightly different slope estimate:

> spread.level .plot(interlocks + 1 ~ nat, robust=FALSE,
+ main=""", xlab="Median(Interlocks + 1)",
+ ylab=""Hinge-Spread", col="black')

LowerHinge Median UpperHinge Hinge-Spread

us 2 6.0 13 11
UK 4 9.0 14 10
Canada 6 13.0 30 24
Other 4 15.5 24 20

Suggested power transformation: 0.1534487
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windows(height=7, width=7)
par(mar=c(5,4,2,3),pty="s",mfrow=c(1,2),mgp=c(2,.75,0))

boxplot(log(interlocks + 1) ~ nat, xlab="Nation of Control",
ylab=expression(paste(log, "(Interlocks + 1)")))

power.axis(O, base=exp(1), side="right", at=c(0, 1, 2, 5, 10, 20, 40, 80),
axis.title="Number of Interlocks™)

cr.interlocks <- i1nterlocks™(1/3)

boxplot(cr.interlocks ~ nat, xlab="Nation of Control",
ylab=expression(paste(‘'cube root (Interlocks)')))

power.axis(0, power=(1/3), side="right", at=c(0, 1, 2, 5, 10, 20, 40, 80),
axis.title="Number of Interlocks™)



Note: For the example above, if you compute and plot log(sd) vs log(mean), you get a slope of 0.977, so a power
estimate much closer to 0, suggesting the log scale more strongly.

Mathematical argument for variance-stabilizing transformations

The following couple of sections are from the Stat 421/502 notes.

I Variance stabilizing transformations

Recall that one justification of the normal model for grouped data,

Yij = M T &,
was that if the noise ¢; = X;;; + X;;, +--- was the result of the addition of unobserved additive, independent
effects then by the central limit theorem &; will be approximately normal.

However, suppose the effects are multiplicative, so that in fact:

Yi =t x& = 4 ><(Xij1>< Xii2 X+

In this case the “noise” term ¢&; should be defined as a random variable close to (centered on) 1, the Y;; will not be

normal, and the variances will not be constant:
2
Var[Y; = g4 Var[ Xy, x Xy, x-- ]
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Log transformation:

logY; =log 4 + (log X, +log X, +-+)
Var(logYij ) - Var(log 4 +log X, +log X, +)
_ Var(log X +10g X, +)
_ 2
~ “logy

So that the variance of the log-data does not depend on the mean ;. Also note that by the central limit theorem
the errors should be approximately normally distributed.

Other transformations:

For data having multiplicative effects , we showed above that
Oj € 4,

and taking the log stabilized the variances. In general, we may observe: o, ,uib i.e. the standard deviation of a
group depends on the group mean.

The goal of a variance stabilizing transformation is to find a transformation y; = g(Y;) such that o, (1)’ =1,
ij
i.e. the standard deviation doesn’t depend on the mean.

Consider the class of power transformations, transformations of the form Y;/ :Yif. Based on a Taylor series

expansion of g,(Y)=Y” around x, we have
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So if we observe o, oc 1, then o &

Yii* = gi(Yij)
=+ (Y = ) A
E[Y;)~ w
Var(Y) = B{(Yy—4)?)(2ui )
SD(YU?‘) oC b pii-t=pio+3-1

b+21 5o if we take A =1—Db then we will have stabilized the variances to

some extent. Of course, we typically don’t know b, but we could try to estimate it from data.

Estimation of b:

o, o 1 < 0y =cu
logo; = logc+bxlog s,
so logs;, = logc+blogy,

Thus we may use the following procedure:

Plot logs; vs. logy,

Fit a least squares line: Im( logs, ~ logy.)
The slope b of the line is an estimate of b.
Analyze y; = y%‘ﬁ.
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|4.5 Transforming Proportions

Proportions: p e[0,1]

Transformations typically considered to have a score on the real line:

P

——, “log odds”
1-p &

e logit(p)=1log

e probit(p)=d'(p) Note: there are relatively subtle differences between logit and probit.

. Sin‘l(\/B) = arcsin (ﬁ), the variance-stabilizing transformation

Fox doesn’t mention that arcsin (\/B) is the transformation that approximately stabilizes the variance.

If X ~Bin(n, p), and p=X/n, then
N ~ 1
E(P)=p.var(p)=—p(1-p)
And Var(sin‘l\/g)zi (radians).
4n

Note, however, that there are many cases where the response variable being analyzed is a proportion (or fraction)

that does not arise from a binomial sampling model, so that argument for arcsin(\/ﬁ) may not apply.
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Count data: A similar argument to be aware of:
If Y ~ Poisson(A4)
E(Y)=Var(Y)=1

1
so o’ =u and logo = Elog,u, SO p= (l—%) and VY is the variance stabilizing-transformation.

Remarks:

e Be aware of how transformations operate on the real line:
O Fractional and negative powers “stretch out” values near zero and “pull in” large positive values

O Powers greater than 1 do the opposite (and are rarely appropriate for variance stabilization)

e Transformations for proportions “stretch” values away from both zero and one.
0 Other types of outcomes that have both minimum (floor) and maximum (ceiling) values might need
similar consideration

e How do you decide how to transform both independent (X) and dependent (Y) variables jointly. The Tukey-
Mosteller “bulging” rule figure tells you what to try in order to straighten a relationship, but for statistical
modeling, the most important (preferred) assumption is usually that of constant variance. Therefore:

1. Choose a transformation of the response variable Y to stabilize the variance, being aware of the fact that
the distribution of values on the horizontal (independent) variable axis does not influence whether the
variance on the vertical (dependent) variable axis is constant. Then,

2. Choose a transformation of the independent variable to linearize the relationship (if possible/feasible).
16




The approach to determining a power transformation illustrated above assumes your data come in separate
groups so that you can compute means and variances to be plotted in order to estimate a slope. What do you
do if you have a regression problem, say Y ~ X, where both variables take numeric (continuous) values and

there are no grouping variables?

O Cut the data into groups according to the independent variable and apply the method above.

O Try to transform (Y, X) jointly so that they have a 2-dimensional (bivariate) normal distribution using
the method of maximum likelihood: box.cox.powers function in the car library.

O For a specified linear model (which assumes you know the “right” scale or transformation for
representing the independent variables), use the boxcox function of the MASS library. Examples for
the boxcox help file:

log-Likelihood

boxcox(Volume ~ log(Height) + log(Girth),
data = trees,

> trees[1:5,]

Girth

OaabrhWwWNPE

8.
8.
8.
10.
10.

Height Volume

3

6
8
)
7

70
65
63
72
81

10.
10.
10.
16.
18.

lambda = seq(-0.25,0.25,length = 10))

cohLhNWW
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boxcox(Days+1 ~ Eth*Sex*Age*Lrn, data = quine,
lambda = seq(-0.05, 0.45, len = 20))

-B30

-B82

> summary(quine)

g Eth Sex Age Lrn Days
= - A-69 F:-80 FO:27 AL:83 MiIn. : 0.00
=5 & N:77 M:66 F1:46 SL:63 1st Qu.: 5.00
2 F2:40 Median :11.00
«© F3:33 Mean :16.46
© 3rd Qu.:22.75
Max . :81.00

0.0 0.1 02 03 04

The response in this example is #days absent from school as a function of ethnic group (Aboriginal, Non-
aboriginal), sex, age group (grade in school), and Learning group (average, slow). That is, these are grouped
data. So let’s compare with variance stabilization.

attach(quine)

Daysl <- Days+1
boxplot(Daysl ~ Eth+Sex+Age+Lrn)

Dmean <- tapply(Daysil, list(Eth,Sex,Age,Lrn),mean)
Dsd <- tapply(Daysl, list(Eth,Sex,Age,Lrn),sd)

plot(log(Dmean), log(Dsd))
abline(coef(Im(log(Dsd)~log(Dmean))))
coef(Im(log(Dsd)~log(Dmean)))
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slope: 1.08
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