-Chapter 5: Linear Least Squares Regression

Text sections 5.1, 9.1, 10.1

5.1 Simple Regression
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(Note the bold font notation for vectors.)
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A further note on notation: In Chap 5 Fox doesn’t

Y distinguish between parameters and estimates. That
doesn’t happen until Chap 6. | will make some distinction
here.

Y. =A+BX, +E =Y +E
Any line through the means has sum of errors = 0:

Y = A+BX
implies that we can write
Y. Y =A+B(X, - X)+E

and

iEi :Z(Yi_X)—BZ(Xi—)?)=O—B><O:O

Two possibilities:

e Find A and B to minimize sum of absolute residuals: Z|Ei|

e Find A and B to minimize sum of squared residuals: Z Ef --- least squares criterion (sensitive to outliers)

S(A,B) =iEf =>(Y,~A-BX,)’




Differentiate with respect to A and B to find the minimum:

0S(A,B)
=22 (Y —A-BX;)=0
3S(AB)

S5 = 22X (Yi—A-BX;)=0

These are the normal equations:
An+B) X, =>Y,
AY X;+BY X2=> X,
with solution:
A=Y -BX
XN -IXTY XX -K)(%Y)
X (X)X -X)

(Everyone but Fox uses the “hat” notation for the estimators.) The first result means that the line with this slope

and intercept goes through the point ()?,Y_), meaning also that the sum of residuals éi =Y, —(A— I§Xi ) is zero.

The 2" normal equation leads to Z Xiéi =0, and similarly, Z\a éi =0, so the residuals are uncorrelated with the
values of the explanatory variable X and with the fitted values \f, = A+ I_3>Xi. (See Fox Exercise 5.1, p. 96.)

[Note my use of hat notation for estimates, fitted values, and residuals.]



I 5.1.2 Simple Correlation

How close does the fitted line fits the scatter of points?

Standard error of the regression or residual standard error is defined as square root of the following variance of
residuals

In contrast to standard error of the regression, the correlation coefficient is a relative measure of fit of the straight
line. We could write down the formula you know for a correlation coefficient, but we’ll express it differently here.

Consider the model without the explanatory variable X:
Y. =A+E/

Least squares estimation means minimize S(A') = Z(Yi — A’)2 which leads to A=Y .

This is the null model and the residual sum of squares for this model will actually be called the total sum of squares:

TSS=YEZ=3(Y,-Y)

while the residual sum of squares for the linear fit will be written

RSS = Zéiz _ Z(Yi —Y:)Z :Z(Yi _(A—I— éXi))z




The difference between these is the regression sum of squares
RegSS =TSS—-RSS

Finally, the ratio of RegSS to TSS is the reduction in (residual) sum of squares due to the linear regression and it
defines the square of the correlation coefficient:

2 RegSS
TSS
(2) r=0 (b) r=0 ) r=02 Fig 5.4 Scatterplos illustrating different
: : : - : levels of correlation.
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This is the analysis of variance for a regression model.

Fig 5.5 Decomposition of the total deviation Y. ~Y into
components Y, —\fi (residual) and \f, ~Y (regression)

We have expressed a correlation coefficient as the square root of
the ratio of an “explained sum of squares” due to linear

regression, RegSS, over a “total sum of squares”. It can also be
computed by analogy with the usual correlation coefficient for a

pair of random variables p = axy/(axay ) ;

Sy X=XV -Y)
LAY S DY

where




It is also interesting to relate this to the regression slope:

(0% -X)(4 ) 06K R KT

V(%7

Ex. Davis reported and measured weights

names(Davis)
summary(Davis)

frepwt <- repwt[sex=="F"]

fweight <- weight[sex=="F"]

fweight <- fweight[!is.na(frepwt)]
frepwt <- frepwt[!is.na(frepwt)]

TSS <- sum( (fweight-mean(fweight))”"2 )

TImfFit <- Im( fweight ~ frepwt )

fweight.hat <- fitted(TImfit) # Ahat + Bhat * X
RSS <- sum( (fweight - fweight.hat)”2 )

RegSS <- sum( (fweight.hat - mean(fweight))”"2 )
summary(TImfit)

anova(TImfit)

cor(fweight, frepwt)”"2




9.1-9.2 Linear models in matrix form

(We are not now covering everything in these first sections of 9.1 and 9.2, just a “taste”.)

Vi=a+ X +¢&,1=1...,n The residual sum of squares can be written
2 2 T
y=a+px+e RSS =& =y —XB[" = (y—Xp) (y-X8)
y=XfB+e Then
ORSS
= + g X=X

Y1 1 x|« &

Y, 1 x [\g g, So, the normal equations are obtained by setting this to zero:

: Do : X Xp=X"y

yn 1 Xn gn and ﬁ=(xTx)_l XTy

The fitted values can then be written
§=XB=X(X"X)" Xy

which is the orthogonal projection of y onto the plane spanned by the columns of X.




Hl, Simple Regression 221

The vector geometry of least squares -

yi=a+px+g,i=1...,n p y
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This is an n-dimensional observation
space in which the variables are

represented as vectors. Flg 10.1 figure 10.1  The vector geometry of the simple-regression model, showing the three-dimensional
| hi del subspace spanned by the vectors x, y, and 1,. Because the expected error is 0, the
llustrates this model. expected-Y vector, Elyl, lies in the plane spanned by 1, and x.

Note: If you need some mathematical review, see the text Appendix material available online, especially section B:
Matrices, Linear Algebra and Vector Geometry.



Figure 10.1 showed the model. Figure 10.2 illustrates the least squares fit.

Figure 10.2 The vector geometry of least-squares fit in simple regression. Minimizing the residual
sum of squares is equivalent to making the e vector as short as possible. The ¥ vector
is, therefore, the orthogonal projection of y onto the {1,,x] plane.
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The ANOVA decomposition

The ANOVA decomposition derives from the mean-deviation form of the model
Y, =A+Bx +E

Substituting the estimate A=Y + BX
Y, =Y =B(x —X)+E
y; =Bx +E

or, in vector notation,

y =BX +e
2] y*
—
J/Tss ./ Rss
i _
|~ i o
\/ RegSSs y* = Bx*

Figure 10.3  The vector geometry of least-squares fit in simple regression for variables in
mean-teviation form. The analysis of variance for the regression follows from the
Pythagorean theorem. The correlation between X and Y is the cosine of the angle W 11
separating the x* and y* vectors.



5.2 Multiple regression

With the matrix notation, moving on to more than one explanatory variable is relatively trivial. The text (sect 5.2.1)
writes

~

Y =A+B,X,+B,X, or,indicating the observations with subscript i, Y, =A+B X, +B,X,, +E

Then writes out the detail of minimizing the error sum of squares, deriving the normal equations and expressions
for A, B,, and B,. Read through this to see how the error sum of squares, denoted by S(A,B,,B,), is

differentiated, but you need not try to remember the form of the least squares estimators in egn (5.6) on p. 88,
except for the fact that A=Y — B X —B,X . Howeuver, it is useful to recognize the form of the normal equations in
egn (5.5):

An+B Y X, +B, Y X, =D,
Azxil+Blzxi21+BZinlxi2 :zqui
AZXiZ + Blzxizxil + Bzzxizz = ZXiZYi

In matrix form (sect 9.1), let

Yl 1 Xll X12 A
y = Y:2 X = 1 X:21 X.zz p-|B
. . . . 82

Yn 1 X nl X n2
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Then (repeating the exact same notation we used for the simple linear regression in matrix form),

RSS =l =y - X8I =(y-x8) (v - Xp)

So
ORSS
X )

and the normal equations are obtained by setting this to zero:
X X=Xy

so f=(X"X) X'y

Note that the elements of X' X are the terms multiplying A, B,, B, in the normal equations as written above:

nooo> Xy X,
XTXZ inl inzl inlxiz
inz inzxil inzz

And the right hand side of the normal equations is
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2.
X'y= Z XY
Z XiZYi
Figure 5.6 The multiple-regression plane, showing the partial slopes B; and B, and the residual E; for the it
observation.
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Duncan occupation prestige example.
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These are 2 different perspectives generated using the “scatter3d” function in the Recmdr package. You can also
“spin” the picture with dynamic rotations, but | can’t get it to work on my Mac (problem with the required tcltk

package for rgl device driver).
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> scatter3d(income, prestige, education, surface.col="gray", pos.res.col="black",
+ neg.res.col="black"™, point.col="gray", fogtype="none",revolutions=2)

> scatter3d(education, prestige, income, surface.col="gray", pos.res.col="black",
+ neg.res.col="black"™, point.col="gray", fogtype="none",revolutions=2)
>
>
>

TImFit.fig5.7 <- Im( prestige ~ income + education, data=Duncan )
summary(TImfit.fig5.7)

Call:
Im(formula = prestige ~ income + education, data = Duncan)

Coefficients:

Estimate Std. Error t value Pr(c|t])
(Intercept) -6.06466 4.27194 -1.420 0.163
income 0.59873 0.11967 5.003 1.05e-05 **=*
education 0.54583 0.09825 5.555 1.73e-06 ***

Residual standard error: 13.37 on 42 degrees of freedom
Multiple R-squared: 0.8282, Adjusted R-squared: 0.82
F-statistic: 101.2 on 2 and 42 DF, p-value: < 2.2e-16

> options(digits=2)
> anova(TImfit.fig5.7)

Analysis of Variance Table

Response: prestige
Df Sum Sq Mean Sq F value Pr(>F)

income 1 30665 30665 171.6 < 2e-16 **=*
education 1 5516 5516 30.9 1.7e-06 ***
Residuals 42 7507 179

Signif. codes: 0 “***” 0.001 “*** 0.01 “*” 0.05 “.” 0.1 * ~ 1



> windows()
> par(mfrow=c(2,2))
> plot(TImFit.fig5.7)
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5.2.3 Standard error and multiple correlation

Standard error of the regression

| DE
% = n-k-1

where K is the number of independent variables in the regression; we lose k +1 df as there are k +1 coefficients,
including the intercept. For the Duncan prestige data example above, s. =13.37. This is in the units of the

response variable and it is directly interpretable. For this example Fox says:

“Recall that the response variable here is the percentage of raters classifying occupation as good or excellent in
prestige; an average prediction error of 13 is substantial given Duncan’s purpose, which was to use the regression
equation to calculate substitute prestige scores for occupations for which direct ratings were unavailable.”

The ANOVA decomposition is exactly as it was before
TSS = RegSS+ RSS

where

TSS=Y (Y, - )
RegSS = Z(\f )
RSS:Z( Y

18



What we called just a squared correlation before, r?, we now call the squared multiple correlation
R? = RegSS
TSS
This is interpreted as “the proportion of the variation in the response variable explained by the regression”. It can
also be shown to be the square of the (usual) correlation coefficient computed between the {Yi} and the {\a}, Mo

hence the name squared multiple correlation.

Note that we can also write

_ ITSS-RSS _1_ RSS
~ TSS © TSS
Because R can only increase as you add more variables to a regression model, R* can be misleadingly large in a

problem with kK somewhat large compared to n. You will sometimes see reports of an “adjusted R*” with a
“correction” for degrees of freedom.

_RSS/(n—k-1)
2 TSS/(n—1)

RZ
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5.2.4 Standardized regression coefficients

Regression coefficients are expressed in the units of the response variable relative to the units of the corresponding
explanatory variable. Therefore we can’t easily compare coefficients B, and B, when the corresponding

explanatory variables are not measured in the same units.

¢ |n the Duncan prestige dataset on US occupations (in 1950!), all the variables are expressed on percentage
scales, so this isn’t really an issue. (income: % of males earning > $3500; education: % of males who were
high school graduates; prestige: % of raters who classified the occupation as having good or excellent

prestige).

e Inthe Prestige dataset on prestige of Canadian occupations, the response prestige is on a points scale while
education is measured in years and income in dollars. So the coefficient B, multiplying education has units of

“points of prestige per year of education”.

Social scientists often standardize the variables in order to directly compare regression coefficients.
Y, =Y =B,(X; — X))+ + B (X - X, ) +E

Manipulate this equation by dividing both sides by the standard deviation of the response variable:

Yi_Y :(81 j(x 1)+_”+(Bks_kj(xik_xk)+5
Sy S ) s Sy S¢ S,

or
20



Ly = Bl*zil Tt BI:Zik
where Z, = (Y, —Y) /s, is the standardized response variable and Z; =(X; - )?j) are standardized explanatory

variables. The coefficients B; =B, (s; /s,) are called standardized partial regression coefficients.

Note that we have not changed the regression model in any important way.

e Has the multiple correlation coefficient changed?

e Has the standard error of the regression changed after this standardization?
Rather, as Fox says:

“By rescaling regression coefficients in relation to a meaure of variation---such as the IQR or standard deviation---
standardized regression coefficients permit a limited comparison of the relative impact of incommensurable
explanatory variables.”

Keep in mind that:

e The scaling is based on sample standard deviations, so the nature of the scaling, and hence the interpretation
of these coefficients, is very much depending on the study design---that ranges of values of the variables that
are represented in the sample. Samples for different populations can produce different results and
interpretations.

e The language “comparison of the relative impact of incommensurable explanatory variables” suggests that (a)
the explanatory variables have an “impact” (i.e., are causal) and (b) that their impact is accurately
represented by this additive linear regression model.
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