Chapter 6: Statistical Inference for Regression

|6.1 Simple Regression Model

Population regression model:

The errors ¢, represent
Y,=a+ X, +¢g,1=1...,n _ _
e omitted explanatory variables
y=a+pfx+e e measurement error

y=Xf+¢ e “inherently random component of Y”

Here we address key assumptions in order to do inference (confidence intervals and tests). But first more on ...

Notation: From now on the text notation is mostly consistent in using capital letters for random variables and
lowercase letters to denote observations, as in the first line above (I wrote it with a small “y” before). However, it

is still somewhat variable as the regression model is variously written with capital and lowercase X on the right-
hand side. A footnote on p. 100 explains that Fox uses lowercase X to stress that the value of X, is fixed, either

literally in an experimental design, or by conditioning on the observed value value X, of X.. So you see that the

explanatory variable could be considered as a random variable or fixed numbers. In addition, chap 9 chooses to
denote a vector of random variables by a lower case bold y as shown above, rather than a bold capital letter.

| tend to use the “hat” notation for estimates where as Fox uses latin letters for estimates of (greek letter)
parameters.



Key assumptions in order to do inference (confidence intervals and tests):

e Linearity: E(Y,)=a+ BX,
or E(s)=E(s[%)=0
e Constantvariance: Var(g |X)=E(Y,—a-px) =0’
e Normality: & ~ N(0,07)
O Question: Do we assume that the Y, are normally distributed?

* Independence: random errors ¢ and &; are statistically (probabilistically) independent. This assumption is

generally justified by knowledge of how the data were sampled/collected. For example, observations which
represent

O Random sample of subjects from large population, vs.
O Time series, vs

0 Sample of children from a school with multiple classrooms. But here, the assumption will depend on
what you are measuring. An analysis of height ~ age, independence between children may be a
reasonable assumption, for for an analysis of spelling ~ age, probably not.

e X’s are either
O Fixed by design, or

0 Sampled/measured with error independent of ¢



Examples for discussion:

e Average income -> Prestige for Canadian occupations
e Education -> Hourly wage rate for Canadian employees
e GDP per capita -> Infant mortality in the UN data base

6.1.2 Properties of least squares estimates:

a=Y -BX
> (%~ X)(% V)
(X~ X)

or, in matrix notation

B=

p=(X"X)" X'y

(1) L.S. estimates are linearin¥Y

a =7 (exercise)

(2) Sampling variance is



Var(4) = Var(z mY,) =" m? Var(Y,)+2> mm,Cov(Y,.Y,)

= (X —X)’o>
(Z(x —x> I >
o,

. Z(x,. (DS

Question: If you are designing a study, how can you make the uncertainty (standard error) of ,B small?

Similarly, you can show

Var Var(Zq )
o
Ny (X, —X)

which is small(est) when the x’s are centered at zero.

(3) If & ~N(0,07), then

X oY X
«-N nZ(x ~-X)? J

A~ ()'5
ot IB’Z(XJ _7)2J




But what if the errors cannot be assumed normally distributed?

Recall that ,3 = Z:miYi , so that by the Central Limit Theorem ,3 should be approximately large
(4) By the Gauss-Markov Theorem, of all linear estimators 8" = ZCiYi that are unbiased, ES" = 3, ,@LS has the
minimum variance --- it is the “most efficient” estimator.
(5) Under all the assumptions stated above, wich can be combined into one statement,
& ~ N(0,572)

(0?,,3) are maximum likelihood estimates. (Consider reading Appendix D (online) to the text by Fox, although
this section goes into more detail than you need)

6.1.3 Confidence intervals and hypothesis tests:

2

Var(ﬁ) = (G# but o is unknown, so we substitute the estimate s; and write
n—1)s;
X X 52 A §2
Var =—E _ and s.e. = | —=—
(ﬂ) (n—1D)s; (IB) (n—1)s;

Defn: The standard error of a statistics is an estimate of the standard deviation of its sampling distribution.

Question: What is the definition of a sampling distribution?




*** R simulation of sampling distributions ***

Confidence intervals: (review?)
B\ — ﬂ ~9
\/O-‘S/Z(Xi - 7)2

BB <t .., |[=1—a (wheret , ,isthe (1-ca/2) %-ile)

<P _tn—Z,a/Z— ~
vse(f)

A P(,B —tan Se(ﬁ) <B< ,8 Ll DS Se(ﬂA))

Same type of calculation applies, of course, for .



Hypothesis test: (review?)

H,: =/, (mostoften considering 5, =0)

A

t, = P=P0_y
se(f5)

Py, { Ao t(nzm/z] —a
se(f5)

= reject if t, > t(n—z),a/Z

(n2y under H

Example: Consider the Davis weight-reported weight data. Test H,: 8 =1
Question: How would you test the null hypothesis H,: f=1and o =0 ?

(there are two computational approaches that provide the same answer)



|6.2 Multiple Regression

The mathematics becomes a little more interesting for multiple regression problems. (Sects 6.2, 9.3).

Let’s first go back and revisit the least squares solution of chapter 5 in a little more detail.
2 2
RSS =& =y — %]
T
=(y=-XB) (y-XB)=Yy'y-2y"Xp+ ' X"Xp
Results for differenctiation of a matrix expression:

o(cp) [ Ol a)on L J

B\ o(cp)op. | e
o(p'CB)
op
which leads to
ORSS

Yo Ty _ T —
o5~ 2XY=2XXp=0

k+

=2Cp

or

p=(X"X) X'y



This works if (XTX) has an inverse, which means that X must be have “full column rank”. That is, the columns of

X must be linearly independent: no column can be an exact linear combination of the other columns. We'll see
shortly that there are consequences for columns which are nearly linearly dependent.

Next consider the basic properties in matrix notation:
E(B) =((X"X)"XTy)=(X"X)" X"E(y)
=(X"X)'X"XB=p
Var(f) = Var(My) = M Var(y) M’
This is a matrix of variances and covariances. We are simplifying notation setting M = (X" X)"' X.
Because Var(y)=o"l_, where |_isthe nxn identify matrix, the expression above simplifies to
Var(,é) =o-'M M' = aj(XT X)X X(XTX) " = o (X" X)"!
You should know and be comfortable with the derivation of this fundamental expression.

Under normality, 8 ~ N, (8,02 (X"X)™".

The standard errors of the estimated regression coefficients are the square roots of the diagonal elements of
S (X' X)™".




There is a very useful expression for the Var(,éj), the jth diagonal element of o2 (X'X)™' that is reported as eqn

(6.2). It can be shown (but you will not be required to show) that

2

A 1 o}
Var(B;) = N
| JI-R] 2 (% = %)

_ O-g
S— —
Zizl(xij = %)

where Rj2 is the squared multiple correlation coefficient for regression of X, the jth column of X, on all the other

columns of X, and )?ij represents the fitted values from this auxiliary regression.

1
J-R

well-predicted by (highly correlated with) the other columns of X, the uncertainty in ﬁj will be large. The second

is called the variance-inflation factor. If this factor is large, meaning that the jth column of X is

The term

line of the expression for Var(ﬁj) tells us the same thing: if the jth column of X is well-predicted by the other

columns of X, the conditional variation in X; given its prediction >?j by the other columns, Z:inzl(xij - )A(ij)2 , Will be
small and, hence, Var(ﬁj) will be large. That is, we will have a problem if the columns of X are nearly linearly
dependent.

Tests of H, :ﬂj =0 and confidence intervals for ﬂj are computed exactly as in simple linear regression, but using

the standard errors of ,5’j presented above.
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Table 9.1 Comparison between simple regression using scalars and multiple regression using matrices

Simple Linear Regression

Multiple Linear

estimator

Z(X)

Regression
Model Y=a+pX+¢ y=Xf+¢
Least-squares Z XYY" B =(XTX)' Xy

Sampling variance

2

V(B)= Z< 7 o (X))

V(B)=a(X'X)

Distribution

p-N(po(Ter))

ﬂA - Nk+l(é76§(x

TX)—l)
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Interpretation of the multiple regression model Y =a+ X + B,X, +¢&

e |n asimple linear regression (one explanatory variable), the coefficient £ is called a marginal regression

coefficient

e Inamultiple linear regression, the coefficient £, is called the partial regression coefficient—the “effect” on

the response variable of a one unit change in the corresponding explanatory variable holding constant the
values of all other explanatory variables. [Does this always make sense?]

» The least squares coefficient represents the average change in Y associated with a one unit change in X,

when all the other X's are held constant.

R example: Prestige ~ Income + Education +. . .

The ANOVA for multiple regression. As shown in chapter 5
TSS = RegSS+ RSS

where
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The conventional table is:

Source SS Df MS F

Regression | RegSS| k | RegMS=RegSS/k | RegMS/RMS

Residual RSS | n-k-1 | RMS=RSS/(n-k-1)

Total TSS n-1
RegMS "MSReg"
Under HO . ﬂl :IBZ = :,Bk; F= RgSS - "MSE" - I:k,n—k—l

Why? The F statistic is the ratio of two independent mean squares (they are independent because they derive
from squared lengths of orthogonal vectors in a geometric representation) divided by their degrees of freedom:

B 7o /k
Zr?—k—l /(n—k-1)
In general, E(RegMS)=0"+ f(B's), andunder H,: B, =8,=---= ., E(RegMS) =0

We always have E(RMS) = af, so under H, we have the ratio of two independent chi-square random variables,
both estimating the same thing, and this is the definition of a central F-distribution.

A little algebra shows that we can also express the F-statistic as

_n-k-1 R?

F % XI—R2

13



It really helps to see this in matrix notation: y=Xf+¢&,y= X,B = X(X'X)"' Xy

In Chap 11 you’ll see the notation § =Hy and the residuals are (y—y)=(1,—H)y, where H=X(X'X)"'Xis
commonly referred to as the “hat matrix”. It is a projection matrix: HH = H, and similarly (I -H)(1-H)=(1-H)

. And, H (I — H) =0, so these two projection matrices are orthogonal.

This is illustrated in Fig 10.6 for a regression with k=2 explanatory variables and the problem represented in mean-
centered form. ¥ =Hy", where H is the projection matrix defined from the design matrix X = [Xl X, }

(a) (b}

Figure 10.6  The vector geometry of least-squares fit in multiple regression, with the variables in
mean-deviation form. The vectors y*, xl' and X3 span a three-dimensional subspace,
shown in (a). The fitted-Y vector, ¥*, is the orthogonal projection of y* onto the plane
spanned by x7 and x3. The {x], x3} plane is shown in (b).
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(Dropping the notation for the centered variables)

y'y=(9+(y-9)) (§+(y-9))

=(Hy +(1-H)y)' (Hy+(1-H)y)
=y'Hy +y' (I-H)y =RegSS + RSS

Note that the Regression SS can also be written

Y Hy =y X(X'X) Xy =Xy

The ANOVA table can therefore be written

y (1-H)y=y'y-8"X"y

Source SS Df |MS
Regression y' Hy=4"X"y k+1 | RegMS=RegSS/(k+1)
Residual n-k

RMS=RSS/(n-k)

Total (“uncorrected”)

T

y'y

n-1

If we write everything in mean-centered form, the same expressions hold (with *’s on all the vectors and matrices

to denote mean-centering) with k and (n-k-1) df. The “Total” sum of squares is then “corrected for the mean”,

yTy =D (- ).
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The omnibus F-test derived from this ANOVA is a test of the significance of the multiple regression, rejected if there
is evidence that at least one of the S's is significantly different from zero.

A modest generalization of this provides a basis for testing a subset of the slopes. In the general framework we
define

RSS, and RegSS, the regression sum of squares for the full model

RSS, and RegSS, the residual and regression sums of squares for the reduced model

and

_ (RegSS, —RegSS,)/q  (RSS,-RSS,)/q
T RSS,/(n—k-1) _ RSS /(n—k-1)

In matrix notation,
Y=a+ X[ +Xp +¢&

where S, =(ﬂl,...,ﬂq )T , B, =(ﬂq+l,...,ﬂk )T and X =[X, X,] with X, and X, having q and (k —q) columns,
respectively.

Let
RegSS, =SS(4,) = 8,X}y, the regression sum of squares for the reduced model.

RegSS, =SS(8,8,) =B X"y, the regression sum of squares for the full model.
16



(SS(B..B)-SS(B.))

Under H,: 58, =0, F = RSS/(N—Kk—1) ~ Fynxc)

*If X, and X, are orthogonal, then

Ss(ﬂAlaﬁAz) = ﬂAlxlTy + ﬂAzxgy

Source SS Df MS

X, : SS(3,) BXTy k-0 | RegMS;
X,\[X,: SS(B1B) | BT Xy-B"X,y q | RegMSy;
Residual y (1-H)y=y'y —B"X"y | n-k | RMS=RSS/(n-k)
Total yTy' n-1

* A special case for testing g =1 coefficient, H,: 5, =0. F-test or t-test?

n-k—-1 R? r
k

_ 12 _
Foeny =t - Because F = Xl— o = —

Return to R code and anova() for multiple regression.




|6.3 Empirical vs Structural Relations

Empirical: Descriptive relationship among variables

Structural: Descriptions from which we intend to infer causation, a model of how response scores are actually
determined.

(a) Y=a'+p4X +¢&
(b) Y=a+BX +B,X,++&

If the relationship between Y and X, is well described by the simple linear relationship (a), the fact that ,Bl' = B,

51 . . . . . . . .
so that 8, may be considered a biased estimate of 3, is not necessarily an issue. However, if we really believed

that the data were generated by model (b), this bias would be important.

If (b) is true, but we fit (a), then &' = (ﬁ2X2 +¢), so that X, and &' are correlated if X, and X, are correlated.

Correlation between the error term and the explanatory variable is a problem leading to bias of ,31' with respect to
the value of S, in (b).

On pp. 111-112 Fox derives an expression for S, in model (b)

18



Take expected values of (b), giving
o u,=a+pu+pu,+0
and subtract this from (b), giving
o (Y—u)=B (X —m)+B (X, =) +e

Multiply by (X, — ), giving

° (Xl _ﬂl)(Y _luy)zﬂl(xl _ll'll)z +162(X1 _ﬂl)(xz —H

Take expected value of both sides of this equation:
® Oy = 181012 + 5,0,
Thus, solving for £,

(71Y

O,
—A—3

O-l 1

* fi=

. A Sy
The least squares estimate from model (a) is B/ =—-, so that ,Bl is an estimate of
S

1

. . . O-
an estimator of the coefficient for model (b), S, = IY

iy 012
x :

)+ (X, — )¢

1

E(ﬁl')=ﬂ1+ﬂ22—?-

,81 , meaning it is biased as
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We have bias if

1. X, is “relevant” (i.e., 8, #0), and

2. X, and X, are correlated.

. : . e O . :
One final subtlety of interpretation: the “bias” 8, — depends on the nature of the causal relationship between
1

X,and X, InFig6.2(a) /)’20-—122 is seen to be the indirect effect of X, on Y through X,.
' o

1

612
2

XZ
1
intervening variable on a causal path through X,.
o
T A
O-l

2

v
<

is the population slope for the regression of X, on X,. X, isan

20



By contrast, in Fig 6.2(b), X, is a common prior cause of both X, and Y,

X, In this case the bias is considered a spurious (non-causal)
component of the association between X, and X,.

And in this case it is critical to include the variable X, in the
B, analysis— “to control for X,” in examining the association between
X, and X,.

make causal inference from observational studies so difficult.

/ X, is sometimes described as a lurking variable. These are what

v
<<

Omission of X, is not necessarily (always) an issue in the case of Fig

’ b, 6.2(a), depending on whether it is important to understand the
direct and indirect effects of X,.

So, you have to think hard about your problem if the scientific question(s) target the effect of a particular
explanatory variable “ X,”.

Examples:

e X, isameasure of Chinese investment in the U.S. Y is a measure of U.S. stock prices. “X,”?

e X, isanindicator distinguishing two ethnic groups. Y is a measure of public health outcome. “X,"?
See Fox Exercise 6.8 in addition to Exercise 6.9 assigned for Homework #4.
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Another example from my applied work: The effects of Prenatal Alcohol exposure on offspring IQ.

Prenatal Alcohol

“""---..__| Other neuropsychological

Parental 1Q outcomes

Child IQ

Other covariates

We can’t say that Parental IQ causes Maternal drinking (prenatal alcohol exposure), but it is correlated with
prenatal alcohol (in a manner that depends on how you measure prenatal alcohol), so it contributes to the
observed association of Prenatal Alcohol with Child IQ.

= you must have Parental IQ in the model or else you will have a biased estimate of the effect of Prenatal Alcohol
on Child IQ.

What do you do if you haven’t measured Parental 1Q?

22



|6.4 Measurement Error in Explanatory Variables

The basic multiple regression models we work with assume that the explanatory variables are known without error.

Sometimes this is a reasonable assumption and sometimes not. Suppose you believe in a multiple regression
model as expressed in egn (6.9),

Y=p7+5,X,+¢
where X, is measured without error, but you cannot directly observe 7. Instead you have a measurement of 7 (a
“fallible indicator”)

X, =7+0
where O represents measurement error. And we are particulary interested in the coefficient S, (not just whether

our multiple regression does a good job of predicting Y ).

| will not go through the algebra presented in this section as we will not address the approaches to deal with the
subject of measurement error. Suffice to say that, when you compute the regression of Y on X, and X,, the
measurement error in X,

o “gttenuates” the coefficient estimate ,@1— makes it systematically biased (smaller in absolute value) with
respect to the coefficient S, in the true model.

e can bias the coefficient estimate ﬁz in either a positive or negative direction (toward or away from 0)
depending on sign of covariance between X and X, .

23



Explanation of effect of measurement error in the case of simple linear regression (not from Fox).

Y=a+ptr+¢&, X.=17,+0,
=a+fX +(g+pBS6)=a+pf1 +¢
where ¢ ~N(0,07), & ~N(0,02).
Define of = Z(ri — ?)z/n, the variance in the “true” predictor, and assume assume variability in 7. is uncorrelated
with the measurement error 6..

It is an easy exercise to show that

E(&)=Bl/[1+"%zj<ﬂl

The problem occurs because X. and gi* are usually not independent for this model
COV(Xi,gi*) =Cov(r,+0,,6 —B0,)=—P (0 ;+ O'g)

Can generally ignore measurement error if

1) oﬁ/of is small --- measurement error small relative to true variance in 7’s
2) X, are fixed and predetermined by design (7, = X. =6, o  + 0'§ =0)

3) postulated modelis Y. =a+ B X. + ¢

24



You can probably imagine how measurement error must be a consideration in may social science models where
explanatory variables are concepts measured with error.

What is “education” in the occupational prestige dataset? Is it a concept measured with error? See Exercise 6.13.

Example of practical importance of measurement error in our current research on effects of air pollution on public
health.

Large EPA-funded study of effects of long-term exposure to “fine particulate matter” (PM,s) and other air
pollutants, especially traffic-related pollutants) on cardiovascular disease in older people.

- We want to know the effect of “true exposure” to PM, s on measures of coronary artery calcium, for example,
as well as cardiovascular “events”. This has great implications for public health and regulation of air pollution.

- PM, s concentration is measured over time at a fixed number of monitoring sites and these data are used to
estimate concentrations at the locations where the subjects live. There is considerable error in the

estimation of true concentration at the locations where people live (let alone “true exposure”, which involves
lots of other factors).

- Itis a current research activity to determine good ways to deal with measurement error in this problem.
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