Chapter 7: Dummy Variable Regression

I 7.1 A Dichotomous Factor

Common slope model with a binary factor

Y. =a+ X, +yD, +¢

where
1 for men
‘={o for women
So, for men: Y=a+ X +yl+e =(a+y)+ X +¢
for women: Y=o+ X +y-0+¢ =(a)+ X +¢
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The additive dummy variable regression model.

Figure 7.2
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The geometric view of the multiple regression on one
guantitative and one binary regressor.

(Fox: “the geometric ‘trick’, as the linear regression
plane is defined only at D=0 and D=1)




Changing the “reference category” so that

D 0 for men
" 11 for women
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We'll see additional approaches to coding factors in R.



|7.2 Polytomous Factors

Category D, D, D3
Professional |1 0 0
White Collar |0 1 0
Blue Collar |0 0 1

Why won’t this work?

Conventional approach: pick one category as Figure 7.6
the “reference” category and use only (m-1)
dummy variables for a factor with m levels.

Yi=a+ Xy +5,Xi, + 71Dy +7,D, + &
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Dummy variable coding in R and
Testing contrasts (not using “quasi-variances” described in Fox’s text)

Remember that this is just a multiple regression that can be written y = X + & where X = [;L X, X, d dz]

and IBT:(a B Bon 7/2)'

Totest H,:y, =y, ,i.e., the Professional and White-Collar jobs have the same prestige “adjusting for education
level and income”, we want to compute

h 7, NN e
t=——=—"=— where se(y, — = /Var(y, — and
%= 7.) (72— 7,) =\Var(7, - 7,)

Var(j/\l _7;2) :Var(j/\l) +Var(7;2) —2- COV(7’/\1’7;2)

We extract these variances and diagonal elements from the off-diagonal elements of the variance-covariance
matrix

Var(f) = s (XTX)_1

InR ...



I 7.3 Modeling Interactions

Figure 7.7
(@) (b)

Income
Income

Education Education

Interaction: The (partial) effect of one variable (or factor) depends on the value or level of another variable (factor).
In this (contrived) example,

(a) the effect of education depends on whether we are considering men or women, and
(b) the difference between men and women (“effect of sex”) depends on the level of education.
Y. =a+ X, +yD,+5(X.D.) +¢
So for women, with D, =0, Y, =a+ X, +yD, +¢
and for men, with D, =1, Y.=(a+y)+(B+0)X, +¢

l.e., we have fit two separate regression lines in one model.



The Principle of Marginality:

- In general, we do not test or interpret main effects of explanatory variables that interact, and
- We do not fit models with interaction terms without the main effects

For example, we do not usually fit
Y, =a+ X, +5(X,D;)+¢ --two lines with common intercept
This can make sense in some applications, but less likely is

Y, =a+yD, +6(X,D,) +¢& --- one line has zero slope
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With multiple quantitative explanatory variables and polytomous factors, consider products of explanatory factors
with dummy variables, with R and all other statistical analysis programs do automatically.

BacktoR...
Tests of hypotheses
The default, "Type II" tests computed by the car "Anova" function honor the "Principle of Marginality":

- amain effect is tested by the incremental F-test procedure---comparing models with and without the effect

of interest---only considering models not including interactions with the main effect

--- but you wouldn't usually test a main effect if you believed an interaction was appropriate as it would refer
to an average effect over levels of the other factor.

- aninteraction effect is always tested by the incremental F-test procedure comparing models including the

main effects

- Note: the denominator mean square (Table 7.2) is the “biggest” model with all main effects and interactions.

This estimate is always unbiased for 05 and it is what you want to do unless the sample size is so small that
there are very few degrees of freedom.
"Type III" tests, computed by lots of programs (and by an option in the “Anova” function) will test a given term in a

model, main effect or interaction, against the model including all other terms. l.e., main effects are tested against
models without the main effect but with interactions, which we don't usually want to do that.



1.3, Modeling Interactions
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Table 7.1  Regression Sums of Squares for Several Models Fit to the Canadian
Occupational Prestige Data

Regression
Mode! Terms FParameters Sum of Souares df
1 LETI xTE xT @, B1. P2. Y1 ¥ 2, 24,794 8
d11.812. 821,022
2 LETIxT @ P, P2. Y1, ¥ 2, 24,556. f
S11.812
3 LETE xT @ f1. P2. Y172, 23,842 6
831,822
4 e o, B, Ba. v, ¥2 213,666. 4
5 LE a, B, B2 23,074. 2
6 LT T @ Brrivyz, 23,488, 5
811,812
7 ETE xT @ B2, ¥1:¥2: 22,710. 5
821,872

MNOTE: These sums of squares are the building blocks of incremental F-tests for the main and
interaction effects of the explanatory variables, The following code s used for “erms” in the
model: f, income; £, education; T, occupational type.

Table 7.2 Analysis-of-Variance Table, Showing Incremental F-Tests for the
Terms in the Canadian Occupational Prestige Regression

Models Sum of

Source Contrasted Squares df F p
Income 3=7 1132, 1 28.35 =.0001
Education 2-6 1068, 1 26.75 <.0007
Type 4-5 592, 2 741 <0011
Income x Type 1-3 952. 2 11,92 <.0001
Education x Type 1-2 238. 2 2.98 56
Residuals 3553, 89

Total 28,347, 97

Tahle7.3 Hwvpotheses Tested by the Incremental F-Tests in Table 7.2
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