Design of Engineering Experiments Part 9 – Experiments with Random Factors

- Text reference, Chapter 13, Pg. 484
- Previous chapters have considered fixed factors
 - A specific set of factor levels is chosen for the experiment
 - Inference confined to those levels
 - Often quantitative factors are fixed (why?)
- When factor levels are chosen at random from a larger population of potential levels, the factor is **random**
 - Inference is about the entire population of levels
 - Industrial applications include measurement system studies

Random Effects Models

- Example 13-1 (pg. 487) weaving fabric on looms
- Response variable is strength
- Interest focuses on determining if there is difference in strength due to the different looms
- However, the weave room contains many (100s) looms
- Solution select a (random) **sample** of the looms, obtain fabric from each
- Consequently, "looms" is a random factor
- See data, Table 13-1; looks like standard single-factor experiment with a = 4 & n = 4

Random Effects Models

• The usual single factor ANOVA model is

$$y_{ij} = \mu + \tau_i + \varepsilon_{ij} \begin{cases} i = 1, 2, ..., a \\ j = 1, 2, ..., n \end{cases}$$

• Now both the error term and the treatment effects are random variables:

$$\varepsilon_{ij}$$
 is $NID(0,\sigma^2)$ and τ_i is $NID(0,\sigma_{\tau}^2)$

• Variance components: $V(y_{ij}) = \sigma^2 + \sigma_{\tau}^2$

Relevant Hypotheses in the Random Effects (or Components of Variance) Model

- In the fixed effects model we test equality of treatment means
- This is no longer appropriate because the treatments are randomly selected
 - the individual ones we happen to have are not of specific interest
 - we are interested in the **population** of treatments
- The appropriate hypotheses are

$$H_0: \sigma_\tau^2 = 0$$
$$H_1: \sigma_\tau^2 > 0$$

Testing Hypotheses - Random Effects Model

- The standard ANOVA partition of the total sum of squares still works; leads to usual ANOVA display
- Form of the hypothesis test depends on the **expected mean squares**

$$E(MS_E) = \sigma^2$$
 and $E(MS_{Treatments}) = \sigma^2 + n\sigma_{\tau}^2$

• Therefore, the appropriate test statistic is

$$F_0 = MS_{Treatments} / MS_E$$

DOX 6E Montgomery

Estimating the Variance Components

• Use the **ANOVA** method; equate expected mean squares to their observed values:

$$\hat{\sigma}^2 = MS_E$$
 and $\hat{\sigma}^2 + n\hat{\sigma}_{\tau}^2 = MS_{Treatments}$
 $\hat{\sigma}_{\tau}^2 = \frac{MS_{Treatments} - MS_E}{n}$
 $\hat{\sigma}^2 = MS_E$

- Potential problems with these estimators
 - Negative estimates (woops!)
 - They are moment estimators & don't have best statistical properties

Minitab Solution (Balanced ANOVA)

Factor	Type Le	evels Val	ues						
Loom	random	4	1 2	3	4				
Analysis of Variance for y									
Source	DF	SS	MS	F	P				
Loom	3	89.188	29.729	15.68	0.000				
Error	12	22.750	1.896						
Total	15	111.938							
Source	Variar	nce Error	Expected M	lean Squa	are for Each Term				
	compone	ent term	(using unre	stricted	d model)				
1 Loom	6.9	958 2	(2) + 4(1)						
2 Error	1.8	396	(2)						

Confidence Intervals on the Variance Components

• Easy to find a $100(1-\alpha)\%$ CI on σ^2 :

$$\frac{(N-a)MS_E}{\chi^2_{\alpha/2,N-a}} \leq \sigma^2 \leq \frac{(N-a)MS_E}{\chi^2_{1-(\alpha/2),N-a}}$$

- Other confidence interval results are given in the book
- Sometimes the procedures are not simple

Extension to Factorial Treatment Structure

• Two factors, factorial experiment, both factors random (Section 13-2, pg. 490)

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau\beta)_{ij} + \varepsilon_{ijk} \begin{cases} i = 1, 2, ..., a \\ j = 1, 2, ..., b \\ k = 1, 2, ..., n \end{cases}$$

$$V(\tau_i) = \sigma_{\tau}^2, V(\beta_j) = \sigma_{\beta}^2, V[(\tau\beta)_{ij}] = \sigma_{\tau\beta}^2, V(\varepsilon_{ijk}) = \sigma^2$$
$$V(\gamma_{ijk}) = \sigma_{\tau}^2 + \sigma_{\beta}^2 + \sigma_{\tau\beta}^2 + \sigma^2$$

- The model parameters are *NID* random variables
- Random effects model

Testing Hypotheses - Random Effects Model

- Once again, the standard ANOVA partition is appropriate
- Relevant hypotheses:

$$H_{0}: \sigma_{\tau}^{2} = 0 \qquad H_{0}: \sigma_{\beta}^{2} = 0 \qquad H_{0}: \sigma_{\tau\beta}^{2} = 0$$
$$H_{1}: \sigma_{\tau}^{2} > 0 \qquad H_{1}: \sigma_{\beta}^{2} > 0 \qquad H_{1}: \sigma_{\tau\beta}^{2} > 0$$

• Form of the test statistics depend on the **expected mean** squares: $E(MS_A) = \sigma^2 + n\sigma_A^2 + bn\sigma_A^2 \implies F_0 = \frac{MS_A}{2}$

$$E(MS_{A}) = \sigma^{2} + n\sigma_{\tau\beta}^{2} + an\sigma_{\beta}^{2} \implies F_{0} = \frac{MS_{B}}{MS_{AB}}$$
$$E(MS_{B}) = \sigma^{2} + n\sigma_{\tau\beta}^{2} \implies F_{0} = \frac{MS_{B}}{MS_{AB}}$$
$$E(MS_{AB}) = \sigma^{2} + n\sigma_{\tau\beta}^{2} \implies F_{0} = \frac{MS_{AB}}{MS_{E}}$$
$$E(MS_{E}) = \sigma^{2}$$

DOX 6E Montgomery

Estimating the Variance Components – Two Factor Random model

• As before, use the **ANOVA** method; equate expected mean squares to their observed values:

$$\hat{\sigma}_{\tau}^{2} = \frac{MS_{A} - MS_{AB}}{bn}$$

$$\hat{\sigma}_{\beta}^{2} = \frac{MS_{B} - MS_{AB}}{an}$$

$$\hat{\sigma}_{\tau\beta}^{2} = \frac{MS_{AB} - MS_{E}}{n}$$

$$\hat{\sigma}^{2} = MS_{E}$$

• Potential problems with these estimators

Example 13-2 (pg. 492) A Measurement Systems Capability Study

- Gauge capability (or R&R) is of interest
- The gauge is used by an operator to measure a critical dimension on a part
- **Repeatability** is a measure of the variability due only to the gauge
- **Reproducibility** is a measure of the variability due to the operator
- See experimental layout, Table 13-3. This is a two-factor factorial (completely randomized) with both factors (operators, parts) **random a random effects model**

Example 13-2 (pg. 493) Minitab Solution – Using Balanced ANOVA

Table 13-4 Analysis of Variance (Minitab Balanced ANOVA) for Example 13-2

Analysis of Variance (Balanced Designs)									
Factor Type L part random	evels Val 20	ues 1 8 15	2 9 16	3 10 17	4 11 18	5 12 19	6 13 20	7 14	
operator random	3	1	2	3	10		20		
Analysis of Variance for y									
Source part operator part*operator Error Total	DF 19 2 38 60 119	1185.4 2.6 27.0 59.5 1274.5	17 50 00	MS 62.391 1.308 0.712 0.992		F 87.65 1.84 0.72	P 0.000 0.173 0.861		
Source 1 part 2 operator 3 part*operator 4 Error	Varianco componen 10.2798 0.0149 -0.1399 0.9917	it ter 3 3 4		Expected M (using unr (4) + 2(3) (4) + 2(3) (4) + 2(3) (4)	rest) +) +	•		Term	

Example 13-2 (pg. 493) Minitab Solution – Balanced ANOVA

- There is a large effect of parts (not unexpected)
- Small operator effect
- No Part Operator interaction
- Negative estimate of the Part Operator interaction variance component
- Fit a reduced model with the Part Operator interaction deleted

Example 13-2 (pg. 493) Minitab Solution – Reduced Model

Table 13-5 Analysis of Variance for the Reduced Model, Example 13-2									
Analysis of Variance (Balanced Designs)									
Factor Type Levels Values									
part ran	dom 20		2 9	3	4	5	6	7	
		8		10	11	12	13	14	
		15	16	17	18	19	20		
operator ra	ndom 3	1	2	3					
Analysis of Variance for y									
Source	DF	S S		MS		F	Р		
part	19	1185.425	(62.391	70	.64	0.000		
operator	2	2.617		1.308	1	.48	0.232		
Error	98	86.550		0.883					
Total	119	1274.592							
Source Variance Error Expected Mean Square for Each Term component term (using unrestricted model)									
1 part	10.2513	3 3	(3)	+ 6(1)					
2 operator	0.0106	3	(3)	+ 40(2))				
3 Error	0.8832		(3)						

Example 13-2 (pg. 493) Minitab Solution – Reduced Model

• Estimating gauge capability:

$$\hat{\sigma}_{gauge}^2 = \hat{\sigma}^2 + \hat{\sigma}_{\beta}^2$$
$$= 0.88 + 0.01$$
$$= 0.89$$

• If interaction had been significant?

The Two-Factor Mixed Model

• Two factors, factorial experiment, factor *A* fixed, factor *B* random (Section 12-3, pg. 522)

$$y_{ijk} = \mu + \tau_i + \beta_j + (\tau\beta)_{ij} + \varepsilon_{ijk} \begin{cases} \tau = 1, 2, ..., \alpha \\ j = 1, 2, ..., n \end{cases}$$

$$k = 1, 2, ..., n$$

$$V(\beta_{j}) = \sigma_{\beta}^{2}, V[(\tau\beta)_{ij}] = [(a-1)/a]\sigma_{\tau\beta}^{2}, V(\varepsilon_{ijk}) = \sigma^{2}$$
$$\sum_{i=1}^{a} \tau_{i} = 0, \sum_{i=1}^{a} (\tau\beta)_{ij} = 0$$

- The model parameters β_j and ε_{ijk} are *NID* random variables, the interaction effect is normal, but not independent
- This is called the **restricted model**

Testing Hypotheses - Mixed Model

- Once again, the standard ANOVA partition is appropriate
- Relevant hypotheses:

$$H_0: \tau_i = 0 \qquad H_0: \sigma_\beta^2 = 0 \qquad H_0: \sigma_{\tau\beta}^2 = 0$$
$$H_1: \tau_i \neq 0 \qquad H_1: \sigma_\beta^2 > 0 \qquad H_1: \sigma_{\tau\beta}^2 > 0$$

• Test statistics depend on the **expected mean squares**:

$$E(MS_{A}) = \sigma^{2} + n\sigma_{\tau\beta}^{2} + \frac{bn\sum_{i=1}^{2}\tau_{i}^{2}}{a-1} \implies F_{0} = \frac{MS_{A}}{MS_{AB}}$$
$$E(MS_{B}) = \sigma^{2} + an\sigma_{\beta}^{2} \implies F_{0} = \frac{MS_{B}}{MS_{E}}$$
$$E(MS_{AB}) = \sigma^{2} + n\sigma_{\tau\beta}^{2} \implies F_{0} = \frac{MS_{AB}}{MS_{E}}$$
$$E(MS_{E}) = \sigma^{2}$$

DOX 6E Montgomery

Estimating the Variance Components – Two Factor Mixed model

• Use the **ANOVA** method; equate expected mean squares to their observed values:

$$\hat{\sigma}_{\beta}^{2} = \frac{MS_{B} - MS_{E}}{an}$$
$$\hat{\sigma}_{\tau\beta}^{2} = \frac{MS_{AB} - MS_{E}}{n}$$
$$\hat{\sigma}^{2} = MS_{E}$$

• Estimate the fixed effects (treatment means) as usual

Example 13-3 (pg. 497) The Measurement Systems Capability Study Revisited

- Same experimental setting as in example 13-2
- Parts are a random factor, but Operators are fixed
- Assume the restricted form of the mixed model
- Minitab can analyze the mixed model

Example 13-3 (pg. 497) Minitab Solution – Balanced ANOVA

Table 13-6 Analysis of Variance (Minitab) for the Mixed Model in Example 13-3. The Restricted Model is Assumed.

Analysis of Variance (Balanced Designs)									
Factor Type L part random	evels Val 20	1 7	2 3 9 10 6 17	4 5 11 12 18 19	6 7 13 14 20				
operator fixed	3		2 3	10 17	20				
Analysis of Variance for y									
Source part operator part*operator Error Total	2 38 60	SS 1185.425 2.617 27.050 59.500 1274.592	MS 62.391 1.308 0.712 0.992	F 62.92 1.84 0.72	P 0.000 0.173 0.861				
Source 1 part 2 operator 3 part*operator 4 Error	Variance componen 10.2332 -0.1399 0.9917	t term 4 3 4	(using re (4) + 6(1	stricted ma)) + 40q[2]					

Example 13-3 Minitab Solution – Balanced ANOVA

- There is a large effect of parts (not unexpected)
- Small operator effect
- No Part Operator interaction
- Negative estimate of the Part Operator interaction variance component
- Fit a reduced model with the Part Operator interaction deleted
- This leads to the same solution that we found previously for the two-factor random model

The Unrestricted Mixed Model

• Two factors, factorial experiment, factor *A* fixed, factor *B* random (pg. 526)

 $y_{ijk} = \mu + \alpha_i + \gamma_j + (\alpha \gamma)_{ij} + \varepsilon_{ijk} \begin{cases} i = 1, 2, ..., a \\ j = 1, 2, ..., b \\ k = 1, 2, ..., n \end{cases}$ $V(\gamma_i) = \sigma_{\beta}^2, V[(\alpha \gamma)_{ii}] = \sigma_{\alpha \gamma}^2, V(\varepsilon_{iik}) = \sigma^2$

$$\sum_{i=1}^{a} \alpha_i = 0$$

• The random model parameters are now **all** assumed to be *NID*

Testing Hypotheses – Unrestricted Mixed Model

- The standard ANOVA partition is appropriate
- Relevant hypotheses:

$$H_0: \alpha_i = 0 \qquad H_0: \sigma_{\gamma}^2 = 0 \qquad H_0: \sigma_{\alpha\gamma}^2 = 0$$
$$H_1: \alpha_i \neq 0 \qquad H_1: \sigma_{\gamma}^2 > 0 \qquad H_1: \sigma_{\alpha\gamma}^2 > 0$$

• Expected mean squares determine the test statistics:

$$E(MS_{A}) = \sigma^{2} + n\sigma_{\alpha\gamma}^{2} + \frac{bn\sum_{i=1}^{2}\alpha_{i}^{2}}{a-1} \implies F_{0} = \frac{MS_{A}}{MS_{AB}}$$
$$E(MS_{B}) = \sigma^{2} + n\sigma_{\alpha\gamma}^{2} + an\sigma_{\gamma}^{2} \implies F_{0} = \frac{MS_{B}}{MS_{AB}}$$
$$E(MS_{AB}) = \sigma^{2} + n\sigma_{\alpha\gamma}^{2} \implies F_{0} = \frac{MS_{AB}}{MS_{E}}$$
$$E(MS_{E}) = \sigma^{2}$$

DOX 6E Montgomery

Estimating the Variance Components – Unrestricted Mixed Model

• Use the **ANOVA** method; equate expected mean squares to their observed values:

$$\hat{\sigma}_{\gamma}^2 = \frac{MS_B - MS_{AB}}{an}$$

$$\hat{\sigma}_{\alpha\gamma}^{2} = \frac{MS_{AB} - MS_{E}}{n}$$
$$\hat{\sigma}^{2} = MS_{E}$$

• The only change compared to the restricted mixed model is in the estimate of the random effect variance component

Example 13-4 (pg. 499) Minitab Solution – Unrestricted Model

Table 13-7 Analysis of the Experiment in Example 13-3 Using the Unrestricted Model									
Analysis of Variance (Balanced Designs)									
Factor Type L part random	evels Val 20	1 8	2 9 16	3 10 17	4 11 18	5 12 19	6 13 20	7 14	
operator fixed	3	1	2	3	10		20		
Analysis of Variance for y									
Source part operator part*operator Error Total	DF 19 2 38 60 119	S 1185.42 2.61 27.05 59.50 1274.59	7 0 0	MS 62.391 1.308 0.712 0.992		F 87.65 1.84 0.72	P 0.000 0.173 0.861		
Source 1 part 2 operator 3 part*operator 4 Error	Variance componen 10.2798 -0.1399 0.9917	t term 3 3 4	n ((Expected M (using unr (4) + 2(3) (4) + 2(3) (4) + 2(3) (4) + 2(3)	est) +) +	ricted m		Term	

Finding Expected Mean Squares

- Obviously important in determining the form of the test statistic
- In fixed models, it's easy:

 $E(MS) = \sigma^2 + f(\text{fixed factor})$

- Can always use the "brute force" approach just apply the expectation operator
- Straightforward but tedious
- Rules on page 502-504 work for any balanced model
- Rules are consistent with the **restricted** mixed model can be modified to incorporate the **unrestricted** model assumptions

Approximate F Tests

- Sometimes we find that there are no exact tests for certain effects (page 505)
- Leads to an approximate *F* test ("pseudo" *F* test)
- Test procedure is due to Satterthwaite (1946), and uses **linear combinations** of the original mean squares to form the *F*-ratio
- The linear combinations of the original mean squares are sometimes called "synthetic" mean squares
- Adjustments are required to the degrees of freedom
- Refer to Example 13-7, page 507
- Minitab will analyze these experiments, although their "synthetic" mean squares are not always the best choice