Design of Engineering Experiments Part 9 - Experiments with Random Factors

- Text reference, Chapter 13, Pg. 484
- Previous chapters have considered fixed factors
- A specific set of factor levels is chosen for the experiment
- Inference confined to those levels
- Often quantitative factors are fixed (why?)
- When factor levels are chosen at random from a larger population of potential levels, the factor is random
- Inference is about the entire population of levels
- Industrial applications include measurement system studies

Random Effects Models

- Example 13-1 (pg. 487) - weaving fabric on looms
- Response variable is strength
- Interest focuses on determining if there is difference in strength due to the different looms
- However, the weave room contains many (100s) looms
- Solution - select a (random) sample of the looms, obtain fabric from each
- Consequently, "looms" is a random factor
- See data, Table 13-1; looks like standard singlefactor experiment with $a=4 \& n=4$

Random Effects Models

- The usual single factor ANOVA model is

$$
y_{i j}=\mu+\tau_{i}+\varepsilon_{i j}\left\{\begin{array}{l}
i=1,2, \ldots, a \\
j=1,2, \ldots, n
\end{array}\right.
$$

- Now both the error term and the treatment effects are random variables:

$$
\varepsilon_{i j} \text { is } \operatorname{NID}\left(0, \sigma^{2}\right) \text { and } \tau_{i} \text { is } \operatorname{NID}\left(0, \sigma_{\tau}^{2}\right)
$$

- Variance components: $V\left(y_{i j}\right)=\sigma^{2}+\sigma_{\tau}^{2}$

Relevant Hypotheses in the Random Effects (or Components of Variance) Model

- In the fixed effects model we test equality of treatment means
- This is no longer appropriate because the treatments are randomly selected
- the individual ones we happen to have are not of specific interest
- we are interested in the population of treatments
- The appropriate hypotheses are

$$
\begin{aligned}
& H_{0}: \sigma_{\tau}^{2}=0 \\
& H_{1}: \sigma_{\tau}^{2}>0
\end{aligned}
$$

Testing Hypotheses - Random Effects Model

- The standard ANOVA partition of the total sum of squares still works; leads to usual ANOVA display
- Form of the hypothesis test depends on the expected mean squares

$$
E\left(M S_{E}\right)=\sigma^{2} \text { and } E\left(M S_{\text {Treatments }}\right)=\sigma^{2}+n \sigma_{\tau}^{2}
$$

- Therefore, the appropriate test statistic is

$$
F_{0}=M S_{\text {Treatments }} / M S_{E}
$$

Estimating the Variance Components

- Use the ANOVA method; equate expected mean squares to their observed values:

$$
\begin{gathered}
\hat{\sigma}^{2}=M S_{E} \text { and } \hat{\sigma}^{2}+n \hat{\sigma}_{\tau}^{2}=M S_{\text {Treatments }} \\
\hat{\sigma}_{\tau}^{2}=\frac{M S_{\text {Treatments }}-M S_{E}}{n} \\
\hat{\sigma}^{2}=M S_{E}
\end{gathered}
$$

- Potential problems with these estimators
- Negative estimates (woops!)
- They are moment estimators \& don't have best statistical properties

Minitab Solution (Balanced ANOVA)

Confidence Intervals on the Variance Components

- Easy to find a $100(1-\alpha) \%$ CI on σ^{2} :

$$
\frac{(N-a) M S_{E}}{\chi_{\alpha / 2, N-a}^{2}} \leq \sigma^{2} \leq \frac{(N-a) M S_{E}}{\chi_{1-(\alpha / 2), N-a}^{2}}
$$

- Other confidence interval results are given in the book
- Sometimes the procedures are not simple

Extension to Factorial Treatment Structure

- Two factors, factorial experiment, both factors random (Section 13-2, pg. 490)

$$
\begin{gathered}
y_{i j k}=\mu+\tau_{i}+\beta_{j}+(\tau \beta)_{i j}+\varepsilon_{i j k}\left\{\begin{array}{l}
i=1,2, \ldots, a \\
j=1,2, \ldots, b \\
k=1,2, \ldots, n
\end{array}\right. \\
V\left(\tau_{i}\right)=\sigma_{\tau}^{2}, V\left(\beta_{j}\right)=\sigma_{\beta}^{2}, V\left[(\tau \beta)_{i j}\right]=\sigma_{\tau \beta}^{2}, V\left(\varepsilon_{i j k}\right)=\sigma^{2} \\
V\left(y_{i j k}\right)=\sigma_{\tau}^{2}+\sigma_{\beta}^{2}+\sigma_{\tau \beta}^{2}+\sigma^{2}
\end{gathered}
$$

- The model parameters are NID random variables
- Random effects model

Testing Hypotheses - Random Effects Model

- Once again, the standard ANOVA partition is appropriate
- Relevant hypotheses:

$$
\begin{array}{lll}
H_{0}: \sigma_{\tau}^{2}=0 & H_{0}: \sigma_{\beta}^{2}=0 & H_{0}: \sigma_{\tau \beta}^{2}=0 \\
H_{1}: \sigma_{\tau}^{2}>0 & H_{1}: \sigma_{\beta}^{2}>0 & H_{1}: \sigma_{\tau \beta}^{2}>0
\end{array}
$$

- Form of the test statistics depend on the expected mean squares:

$$
\begin{array}{ll}
E\left(M S_{A}\right)=\sigma^{2}+n \sigma_{\tau \beta}^{2}+b n \sigma_{\tau}^{2} & \Rightarrow F_{0}=\frac{M S_{A}}{M S_{A B}} \\
E\left(M S_{B}\right)=\sigma^{2}+n \sigma_{\tau \beta}^{2}+a n \sigma_{\beta}^{2} & \Rightarrow F_{0}=\frac{M S_{B}}{M S_{A B}} \\
E\left(M S_{A B}\right)=\sigma^{2}+n \sigma_{\tau \beta}^{2} & \Rightarrow F_{0}=\frac{M S_{A B}}{M S_{E}} \\
E\left(M S_{E}\right)=\sigma^{2}
\end{array}
$$

Estimating the Variance Components - Two Factor Random model

- As before, use the ANOVA method; equate expected mean squares to their observed values:

$$
\begin{gathered}
\hat{\sigma}_{\tau}^{2}=\frac{M S_{A}-M S_{A B}}{b n} \\
\hat{\sigma}_{\beta}^{2}=\frac{M S_{B}-M S_{A B}}{a n} \\
\hat{\sigma}_{\tau \beta}^{2}=\frac{M S_{A B}-M S_{E}}{n} \\
\hat{\sigma}^{2}=M S_{E}
\end{gathered}
$$

- Potential problems with these estimators

Example 13-2 (pg. 492)
 A Measurement Systems Capability Study

- Gauge capability (or R\&R) is of interest
- The gauge is used by an operator to measure a critical dimension on a part
- Repeatability is a measure of the variability due only to the gauge
- Reproducibility is a measure of the variability due to the operator
- See experimental layout, Table 13-3. This is a two-factor factorial (completely randomized) with both factors (operators, parts) random - a random effects model

Example 13-2 (pg. 493)
 Minitab Solution - Using Balanced ANOVA

Table 13-4 Analysis of Variance (Minitab Balanced ANOVA) for Example 13-2

Analysis of Variance (Balanced Designs)								
$\begin{array}{lr}\text { Factor } & \text { Type } \\ \text { part } & \text { random }\end{array}$	$\begin{array}{r} \text { Levels } \\ 20 \end{array}$	Values 1	2	3	4	5	6	7
		8	9	10	11	12	13	14
		15	16	17	18	19	20	
operator random	3	1	2	3				
Analysis of Variance for y								
Source	D F		S S	M		F	P	
part	19	1185	5.425	62.391		87.65	0.000	
operator	2		2.617	1.308		1.84	0.173	
part*operator	38		7.050	0.712		0.72	0.861	
Error	60		9.500	0.992				
Total	119	1274	4.592					
Source	Variance component 102798		Error term	Expected Mean Square for Each (using unrestricted model)				Term
1 part			3	(4) $+2($	3) +	6(1)		
2 operator	0.0	149	3	$(4)+2($	3) +	40(2)		
3 part*operator	-0.1	399	4	$(4)+2(3)$				
4 Error	0.9	917		(4)				

Example 13-2 (pg. 493) Minitab Solution - Balanced ANOVA

- There is a large effect of parts (not unexpected)
- Small operator effect
- No Part - Operator interaction
- Negative estimate of the Part - Operator interaction variance component
- Fit a reduced model with the Part Operator interaction deleted

Example 13-2 (pg. 493) Minitab Solution - Reduced Model

Table 13-5 Analysis of Variance for the Reduced Model, Example 13-2

Example 13-2 (pg. 493) Minitab Solution - Reduced Model

- Estimating gauge capability:

$$
\begin{aligned}
\hat{\sigma}_{\text {gauge }}^{2} & =\hat{\sigma}^{2}+\hat{\sigma}_{\beta}^{2} \\
& =0.88+0.01 \\
& =0.89
\end{aligned}
$$

- If interaction had been significant?

The Two-Factor Mixed Model

- Two factors, factorial experiment, factor A fixed, factor B random (Section 12-3, pg. 522)

$$
\begin{gathered}
y_{i j k}=\mu+\tau_{i}+\beta_{j}+(\tau \beta)_{i j}+\varepsilon_{i j k}\left\{\begin{array}{l}
i=1,2, \ldots, a \\
j=1,2, \ldots, b \\
k=1,2, \ldots, n
\end{array}\right. \\
V\left(\beta_{j}\right)=\sigma_{\beta}^{2}, V\left[(\tau \beta)_{i j}\right]=[(a-1) / a] \sigma_{\tau \beta}^{2}, V\left(\varepsilon_{i j k}\right)=\sigma^{2} \\
\sum_{i=1}^{a} \tau_{i}=0, \sum_{i=1}^{a}(\tau \beta)_{i j}=0
\end{gathered}
$$

- The model parameters β_{j} and $\varepsilon_{i j k}$ are NID random variables, the interaction effect is normal, but not independent
- This is called the restricted model

Testing Hypotheses - Mixed Model

- Once again, the standard ANOVA partition is appropriate
- Relevant hypotheses:

$$
\begin{array}{lll}
H_{0}: \tau_{i}=0 & H_{0}: \sigma_{\beta}^{2}=0 & H_{0}: \sigma_{\tau \beta}^{2}=0 \\
H_{1}: \tau_{i} \neq 0 & H_{1}: \sigma_{\beta}^{2}>0 & H_{1}: \sigma_{\tau \beta}^{2}>0
\end{array}
$$

- Test statistics depend on the expected mean squares:

$$
\begin{array}{ll}
E\left(M S_{A}\right)=\sigma^{2}+n \sigma_{\tau \beta}^{2}+\frac{b n \sum_{i=1}^{a} \tau_{i}^{2}}{a-1} & \Rightarrow F_{0}=\frac{M S_{A}}{M S_{A B}} \\
E\left(M S_{B}\right)=\sigma^{2}+a n \sigma_{\beta}^{2} & \Rightarrow F_{0}=\frac{M S_{B}}{M S_{E}} \\
E\left(M S_{A B}\right)=\sigma^{2}+n \sigma_{\tau \beta}^{2} & \Rightarrow F_{0}=\frac{M S_{A B}}{M S_{E}} \\
E\left(M S_{E}\right)=\sigma^{2} \quad \text { DOX 6E Montgomery }
\end{array}
$$

Estimating the Variance Components - Two Factor Mixed model

- Use the ANOVA method; equate expected mean squares to their observed values:

$$
\begin{gathered}
\hat{\sigma}_{\beta}^{2}=\frac{M S_{B}-M S_{E}}{a n} \\
\hat{\sigma}_{\tau \beta}^{2}=\frac{M S_{A B}-M S_{E}}{n} \\
\hat{\sigma}^{2}=M S_{E}
\end{gathered}
$$

- Estimate the fixed effects (treatment means) as usual

Example 13-3 (pg. 497)
 The Measurement Systems Capability Study Revisited

- Same experimental setting as in example 13-2
- Parts are a random factor, but Operators are fixed
- Assume the restricted form of the mixed model
- Minitab can analyze the mixed model

Example 13-3 (pg. 497) Minitab Solution - Balanced ANOVA

Table 13-6 Analysis of Variance (Minitab) for the Mixed Model in Example 13-3.
The Restricted Model is Assumed.

Example 13-3
 Minitab Solution - Balanced ANOVA

- There is a large effect of parts (not unexpected)
- Small operator effect
- No Part - Operator interaction
- Negative estimate of the Part - Operator interaction variance component
- Fit a reduced model with the Part - Operator interaction deleted
- This leads to the same solution that we found previously for the two-factor random model

The Unrestricted Mixed Model

- Two factors, factorial experiment, factor A fixed, factor B random (pg. 526)

$$
\begin{gathered}
y_{i j k}=\mu+\alpha_{i}+\gamma_{j}+(\alpha \gamma)_{i j}+\varepsilon_{i j k}\left\{\begin{array}{l}
i=1,2, \ldots, a \\
j=1,2, \ldots, b \\
k=1,2, \ldots, n
\end{array}\right. \\
V\left(\gamma_{j}\right)=\sigma_{\beta}^{2}, V\left[(\alpha \gamma)_{i j}\right]=\sigma_{\alpha \gamma}^{2}, V\left(\varepsilon_{i j k}\right)=\sigma^{2} \\
\sum_{i=1}^{a} \alpha_{i}=0
\end{gathered}
$$

- The random model parameters are now all assumed to be NID

Testing Hypotheses - Unrestricted Mixed Model

- The standard ANOVA partition is appropriate
- Relevant hypotheses:

$$
\begin{array}{lll}
H_{0}: \alpha_{i}=0 & H_{0}: \sigma_{\gamma}^{2}=0 & H_{0}: \sigma_{\alpha \gamma}^{2}=0 \\
H_{1}: \alpha_{i} \neq 0 & H_{1}: \sigma_{\gamma}^{2}>0 & H_{1}: \sigma_{\alpha \gamma}^{2}>0
\end{array}
$$

- Expected mean squares determine the test statistics:

$$
\begin{aligned}
& E\left(M S_{A}\right)=\sigma^{2}+n \sigma_{\alpha \gamma}^{2}+\frac{b n \sum_{i=1}^{a} \alpha_{i}^{2}}{a-1} \Rightarrow F_{0}=\frac{M S_{A}}{M S_{A B}} \\
& E\left(M S_{B}\right)=\sigma^{2}+n \sigma_{\alpha \gamma}^{2}+a n \sigma_{\gamma}^{2} \Rightarrow F_{0}=\frac{M S_{B}}{M S_{A B}} \\
& E\left(M S_{A B}\right)=\sigma^{2}+n \sigma_{\alpha \gamma}^{2} \quad \Rightarrow F_{0}=\frac{M S_{A B}}{M S_{E}} \\
& E\left(M S_{E}\right)=\sigma^{2} \quad \text { DOX 6E Montgomery }
\end{aligned}
$$

Estimating the Variance Components - Unrestricted Mixed Model

- Use the ANOVA method; equate expected mean squares to their observed values:

$$
\begin{gathered}
\hat{\sigma}_{\gamma}^{2}=\frac{M S_{B}-M S_{A B}}{a n} \\
\hat{\sigma}_{\alpha \gamma}^{2}=\frac{M S_{A B}-M S_{E}}{n} \\
\hat{\sigma}^{2}=M S_{E}
\end{gathered}
$$

- The only change compared to the restricted mixed model is in the estimate of the random effect variance component

Example 13-4 (pg. 499) Minitab Solution - Unrestricted Model

Table 13-7 Analysis of the Experiment in Example 13-3 Using the Unrestricted Model 2.

Finding Expected Mean Squares

- Obviously important in determining the form of the test statistic
- In fixed models, it's easy:

$$
E(M S)=\sigma^{2}+f(\text { fixed factor })
$$

- Can always use the "brute force" approach - just apply the expectation operator
- Straightforward but tedious
- Rules on page 502-504 work for any balanced model
- Rules are consistent with the restricted mixed model - can be modified to incorporate the unrestricted model assumptions

Approximate \boldsymbol{F} Tests

- Sometimes we find that there are no exact tests for certain effects (page 505)
- Leads to an approximate F test ("pseudo" F test)
- Test procedure is due to Satterthwaite (1946), and uses linear combinations of the original mean squares to form the F-ratio
- The linear combinations of the original mean squares are sometimes called "synthetic" mean squares
- Adjustments are required to the degrees of freedom
- Refer to Example 13-7, page 507
- Minitab will analyze these experiments, although their "synthetic" mean squares are not always the best choice

