
Statistics and Computing 13: 363–370, 2003
C© 2003 Kluwer Academic Publishers. Manufactured in The Netherlands.

Preserving confidentiality of
high-dimensional tabulated data:
Statistical and computational issues

ADRIAN DOBRA∗, ALAN F. KARR and ASHISH P. SANIL

National Institute of Statistical Sciences, Research Triangle Park, NC 27709-4006, USA

Dissemination of information derived from large contingency tables formed from confidential data is a
major responsibility of statistical agencies. In this paper we present solutions to several computational
and algorithmic problems that arise in the dissemination of cross-tabulations (marginal sub-tables)
from a single underlying table. These include data structures that exploit sparsity to support efficient
computation of marginals and algorithms such as iterative proportional fitting, as well as a generalized
form of the shuttle algorithm that computes sharp bounds on (small, confidentiality threatening)
cells in the full table from arbitrary sets of released marginals. We give examples illustrating the
techniques.

Keywords: branch and bound, contingency tables, disclosure limitation, integer programming,
marginal bounds, shuttle algorithm

1. Introduction

Statistical agencies, such as the US Census Bureau and Statistics
Canada, disseminate immense amounts of tabular information
derived from confidential microdata. Protecting this confiden-
tiality (and thereby the privacy of the data subjects) is mandated
by law; doing so while releasing as much useful information as
possible presents major challenges.

For the past five years, the National Institute of Statistical
Sciences (NISS) has been developing systems for disclosure-
limited dissemination of tabular summaries of confidential mi-
crodata. Such summaries consist of marginal sub-tables of a
large contingency table constructed by “summing out” one or
more attributes. The full table of frequency counts of data records
with the same (categorical) attribute values is assumed not to
be releasable. More important, many sub-tables are also not re-
leasable because either on their own or in conjunction with other
sub-tables they provide too much information about the full ta-
ble. Often, and in this paper, “too much information” means that
small count (and therefore high risk (Willenborg and de Waal
2001)) cells can be bounded too accurately on the basis of the
released sub-tables.

Two classes of software systems have been developed (Dobra
et al. 2002, Karr, Dobra and Sanil 2003). Table servers are “live,”

∗Now at Duke University, Durham, NC.

responding dynamically to incoming user queries for sub-tables
of the full table, and assessing disclosure risk in light of pre-
viously answered queries. Table servers can be built at realistic
scales, but defensible release rules and operating policies that
the user community views as equitable are major impediments
to their use in practice. Optimal tabular releases (OTRs), by
contrast, are static releases of sets of sub-tables constructed by
maximizing the amount of information released, as given by a
measure of utility of that information, subject to a constraint
on disclosure risk. Common underlying abstractions such as the
query space and released and unreleasable sub-tables and fron-
tiers are discussed in Dobra et al. (2002) and Karr, Dobra and
Sanil (2003).

In this paper we describe computational and algorithmic is-
sues that must be confronted in order to build scalable imple-
mentations of table servers and OTRs. In the next section we in-
troduce some basic notation that is needed to formally define the
bounds problem. In Section 3 we describe the infrastructure—
data structures and computational techniques—necessary to
represent and operate on large (for example, 40-dimensional)
contingency tables in the context of safe releases of sets of
sub-tables. The common theme is sparsity: real, large tables
are very sparse. Section 4 focuses on one method for computing
sharp integer bounds based on any set of released sub-tables. The
approach, which is called the generalized shuttle algorithm, is
based on the underlying hierarchical structure of the categorical

0960-3174 C© 2003 Kluwer Academic Publishers



364 Dobra, Karr and Sanil

data and includes a more general version of the shuttle algorithm
(Buzzigoli and Giusti 1999). Section 5 contains a concluding
discussion.

2. Terminology and notation

Let !1 = {1, . . . , I1}, . . . , !k = {1, . . . , Ik} be finite sets. A
count table (contingency table) indexed by !1, . . . , !k is then a
function

n : !1 × · · · × !k −→ N ,

where N is the set of positive integers. For simplicity, we term
!(n) = !1 × · · · × !k the index set of n. A cell of n is defined
by coordinates i ∈ !(n) and its value is n(i) (in accordance with
commonly used terminology, the value will usually be referred
to as the cell count). Let NC(n) = I1 × · · · × Ik be the number
of cells in n, and let NC+(n) be the number of cells in n with
non-zero values.

For A = {i1, . . . , il} an arbitrary subset of the indices of n,
let n A be the marginal table obtained by “summing out” indices
not in A, which has !(n A) = !i1 × · · · × !il . By convention,
n∅ =

∑
i∈!(n) n(i), which we term the grand total of N .

Let n1, . . . , n p be tables whose index sets !(n j ) are subsets
of some overall index set !, and suppose that these tables are
consistent in the sense that all common marginals agree. (In
particular these tables all have the same grand total.) For exam-
ple, n1, . . . , n p could be marginals of a table n with !(n) = !.
Suppressing dependence on !, we denote by T(n1, . . . , n p) the
set of all tables indexed by ! whose appropriate marginals coin-
cide with n1, . . . , n p. Note that T(n1, . . . , n p) can be empty—
there may exist no table with the n j as marginals, their con-
sistency notwithstanding. “Good” algorithms (for example, to
compute bounds) should accommodate this possibility. For each
cell i , let U (i ; T(n1, . . . , n p)) and L(i ; T(n1, . . . , n p)) be the
maximum and minimum values of cell i over all tables in
T(n1, . . . , n p).

Given ! = !1 × · · · × !k , let RD(!) be the family of all index
sets of the form J1 × · · · × Jk , where each Jm is a partition
of the corresponding !m . If n is table with !(n) = !, then for
each J ∈ RD(!) there is a table n′ = n′(n,J ) obtained from
n by aggregating n not only across variables, but also across
categories within variables. To illustrate, suppose that n

n =




1 2

3 4

5 6





is a 3×2 table, so that !(n) = {1, 2, 3}× {1, 2}. Then RD(!(n))
consists of 16 index sets. The element J = {{1, 2}, {3}} ×
{{1, 2}} of RD(!(n)) corresponds to aggregating categories 1
and 2 of the row attribute and summing out the column attribute,
so that

n′(n,J ) =
[

10

11

]
.

3. Data structures and algorithms for large,
sparse tables

The simplest computer representation of a contingency table
is as a multi-dimensional array of nonnegative integers. (Even
though it is unwieldy to use multi-dimensional arrays in most
programming languages, this structure can readily be imple-
mented as a one-dimensional array by representing the multidi-
mensional coordinates as mixed-radix integers (Knuth 1997)).
However, the number of cells in a table increases exponentially
with the table dimension, and so even moderate sized tables
(10–20 dimensional) can have unmanageably large numbers of
cells. For instance, a 14-dimensional table derived from the
Current Public Survey (CPS) data from 1993, which we have
used as a test case, has 4.5 billion cells! The time and space
requirements of processing such tables using a naive represen-
tation are clearly prohibitive. Fortunately, tables of real data are
extremely sparse—the 14-dimensional table mentioned above
with 4.5 billion cells has merely 76,000 cells with non-zero
counts.

In this section we describe useful data structures and algo-
rithms that exploit the extreme sparsity of the tables to enable
us to perform certain operations on the tables. We first present a
hash-table based structure for tables and outline algorithms for
building the table from microdata and for generating marginal
subtables (Section 3.1) followed by an illustration (Section 3.2)
of how the basic structures and minor extensions can be used to
perform a variant of Iterative Proportional Fitting (IPF) (Bishop,
Fienberg and Holland 1975). We note that AD-Trees (Moore and
Lee 1998) and certain Online Analytical Processing (OLAP)
technologies (Harinarayan, Rajaraman and Ullman 1996) pro-
vide complementary methods for handling tables.

3.1. Building tables and marginal tables

It is clear that any viable representation for large, sparse tables—
with NC(n) ) NC+(n)—must exploit the table’s sparsity. The
most natural strategy is to store the location (coordinate) and
content (count) of only the non-zero cells. This leads to an enor-
mous saving of space, since we only have to store NC+(n) items
instead of NC(n) items. However, the naive approach of stor-
ing a list of (coordinate, count) pairs suffers from the disad-
vantage that retrieving the count of an arbitrary cell entails a
search through the list of cells. Hence, this query, which could
be processed in O(1) time with the multidimensional array rep-
resentation, now takes O(NC+(n)) time (or O(log NC+(n)) if
the list is sorted). Fortunately, we can achieve the space-saving
of a list with the fast access time of an array by using a hash
table.

Hash tables are well-known data structures that support ef-
ficient storage and retrieval for sets of (key, value) pairs—
(coordinate, count) pairs in our case. In a hash table, the data are
stored in an array. The essential component is a hash function
that maps every key (coordinate) to a location in the array and



Preserving confidentiality of high-dimensional tabulated data 365

allows us almost instantly to access data corresponding to a given
key. There are many design issues pertaining to construction of
a good hash function, selection of a good array size, and several
implementation tricks that could be employed. We do not cover
the details here since this is a widely-used and well-studied data
structure (Cormen, Leiserson and Rivest 1990, Knuth 1997),
and has implementations incorporated as standards in computer
languages like Java (part of the “Java collections framework”
(Sun Microsystems 2002)) and C++ (part of the standard library
(Stroustrup 1997)).

Three essential aspects are relevant to us. First, tables and
marginal subtables are stored in hash tables where the key is
a k-variate generalized coordinate, (xi , . . . , xk) with x j ∈ ! j ∪
{0} and the value is the corresponding cell count. (We call it a
generalized coordinate since it can represent cells in both the
full table and any marginal subtable, with the key for a cell in
a marginal table n A being a k-variate coordinate with x j = 0 if
j +∈ A). Second, the hash function is defined over the set of all
generalized coordinates.1

Third, the following operations are supported efficiently:

1. ADDCOUNT(Tab, coord): Increments by one the count for
the cell with coordinate coord in table or marginal table Tab.

2. GETCOUNT(Tab, coord): Retrieves the cell count for the cell
with coordinate coord in table or marginal table Tab.

3. GETMARGINALCOORD(M, coord): Returns the generalized
coordinate in the marginal subtableM corresponding tocoord
in the full table (if M ≡ n A, then this can be computed by
setting x j = 0 for j +∈ A).

We assume the full table fits into the computer’s main memory.
This is a reasonable assumption in cases such as survey data,
where the number of subjects, n∅, is seldom more than an order
of 105 and since NC+(n) < n∅ and, usually, NC+(n) - n∅.
It is clear that the hash table representation of the contingency
table can be easily constructed by reading through the microdata
records sequentially and incrementally updating the table using
ADDCOUNT.

Given the hash table representation, computation of an arbi-
trary marginal sub-table is easy, and is shown in Pseudocode 3.1.

3.2. Example: IPF

We illustrate here how the hash table representation can be
used to develop efficient algorithms to process large, sparse
tables, using Iterative Proportional Fitting (IPF) as an exam-
ple. Intuitively, IPF finds the “best” reconstruction of the full

Pseudocode 3.1 COMPUTEMARGINAL(Table,Marginal): Procedure for computing
marginal subtable from the full table.

for each coord in Table do
marginalCoord = GETMARGINALCOORD(Marginal,coord)
ADDCOUNT(Marginal, marginalCoord)

end for

table consistent with a set of marginal tables of the original
full table. More precisely, IPF calculates the maximum likeli-
hood estimate for a log-linear model defined on variables on
the full table whose minimal sufficient statistics are the given
by the set of marginal tables (Bishop, Fienberg and Holland
1975).

The algorithm involves iteratively refining estimated cell val-
ues for the table. Each iteration consists of stepping through
the list of marginal tables and scaling the current cell estimates
to make the current table estimate consistent with the marginal
table. (To illustrate, for a two-way table, entries are alternately
re-scaled row-wise to make the row sums “correct” and then
column-wise to make the column sums “correct.”) Specifically,
consider cell i with n̂(i) as the current estimate of its count.
Let mc(i) be the cell count of the cell in the marginal table
currently under consideration to which i contributes to, and
let m̂c(i) be the sum of all current estimates of cells like i
that contribute to the marginal sum. Then n̂(i) is adjusted as
n̂(i) ← [mc(i)/m̂c(i)]n̂(i). After adjusting all cells for a given
marginal, the current table estimate will be consistent with the
marginal under consideration (Bishop, Fienberg and Holland
1975).

The IPF variant we present here only considers non-zero
cells—this is equivalent to the original IPF with structural or
known zeroes. Implementing it involves a minor extension of
the basic data structure. The (key, value) pair in the hash ta-
ble now consists of key = coordinate as before and value =
(count,fit) = (n, n̂), where n ≡ n(i), n̂ ≡ n̂(i) for the table,
and n ≡ mc(i), n̂ ≡ m̂c(i) for the marginal table. We de-
fine procedures ADDFIT(Tab, coord) and GETFIT analogous to
ADDCOUNT and GETCOUNT in Section 3.1. We also define a
procedure UPDATEFIT(Tab, coord, fit) that sets the “fit” com-
ponent to the value of fit.

The IPF employs two subroutines MAKEMARGINAL

SUMS(Table,Marginal) (Pseudocode 3.2) and ADJUSTTABLE

(Table,Marginal) (Pseudocode 3.3) that compute the m̂c(i)s
and the n̂(i)s respectively.

The IPF algorithm can be implemented as outlined in Pseu-
docode 3.4. This version trades off time efficiency for memory
space savings by recomputing marginal tables every time they
are required. Since this strategy maintains only two tables in
memory at any given time, it allows us to handle arbitrarily large
sets of marginals. It is also possible to precompute the marginal
tables and avoid the COMPUTEMARGINAL in the inner loop if
both the set of marginal tables and the full table can fit into main
memory.

Pseudocode 3.2 MAKEMARGINALSUMS(Table,Marginal): Procedure for computing
the m̂c(i)s.

for each coord in Table do
marginalCoord = GETMARGINALCOORD(MarginalTable,coord)
ADDFIT(Marginal, marginalCoord)

end for



366 Dobra, Karr and Sanil

Pseudocode 3.3 ADJUSTTABLE(Table,Marginal): Procedure for computing
the n̂(i)s

for each coord in Table do
marginalCoord = GETMARGINALCOORD(Marginal,coord)
marginalFit = GETFIT(Marginal,marginalCoord)
tableFit = GETFIT(Table,coord)
marginalCount = GETCOUNT(Marginal,marginalCoord)
E tableFit ← tableFit ∗ (marginalCount/marginalFit)
UPDATEFIT(Table,coord)

end for

Pseudocode 3.4 IPF(Table,ListOfMarginalNames): Main IPF procedure

repeat
for each Marginal in ListOfMarginalNames do
COMPUTEMARGINAL(Table,Marginal)
do MAKEMARGINALSUMS(Table,Marginal)
do ADJUSTTABLE(Table,Marginal)
end for

until Estimates converge

4. The generalized shuttle algorithm

The fundamental idea behind the “shuttle” algorithm is that the
upper and lower bounds for the cells in a table T, based on knowl-
edge of an arbitrary set of marginal sub-tables, are interlinked.
The method builds on (Buzzigoli and Giusti 1999), which for
the case of an k-way table with known (k − 1)-way marginals,
sequentially improves the bounds for cells of interest until no
further adjustment can be made. The generalized shuttle algo-
rithm was introduced briefly in Dobra and Fienberg (2001) and
presented in detail in Dobra (2002).

Let C denote the set of cells in tables indexed by some element
ofRD(!). If the set of cell entries that define a “super-cell” t1 ∈ C
is included in the set of cells defining another “super-cell” t2, we
write t1 ≺ t2. We can then define a partial ordering “≺” on the

Fig. 1. Hierarchy of cells associated with a 2 × 3 table n = {ni j : 1 ≤ i ≤ 2, 1 ≤ j ≤ 3}

cells in T by tJ 1
1 ···J 1

k
≺ tJ 2

1 ···J 2
k

⇔ J 1
1 ⊆ J 2

1 , . . . , J 1
k ⊆ J 2

k . With
this partial ordering, (C, ≺) has a maximal element, namely the
grand total element, and many minimal elements—the cells in
tables indexed by !.

Suppose now that t1 = tJ 1
1 ···J 1

k
and t2 = tJ 2

1 ···J 2
k

are such that
t1 ≺ t2, and further that J 1

r = J 2
r , for r = 1, . . . , r0 − 1, r0 +

1, . . . , k and J 1
r0

+= J 2
r0

. Then we define the complement of t1
with respect to t2 to be the cell t3 = tJ 3

1 ···J 3
k
, where J 3

r is set equal
to J 1

r if r += r0 and equal J 2
r \ J 1

r otherwise. In this case we write
t1 ⊕t3 = t2. The operator “⊕” is equivalent to joining two blocks
of cells in T to form a third block. The blocks to be joined have
to be composed from the same categories in (k − 1) dimensions
and cannot share any categories in the remaining dimension.

Example 1. In Fig. 1 we give the set T corresponding to a
two-dimensional table having two rows and three columns. The
number of cells in T is 21 = (22 − 1) · (23 − 1). The cell at the
top of the hierarchy is the grand total. This maximal cell can
be decomposed into “elementary” cells, i.e., cells contained in
the initial table n, by sequentially going through pairs of cells
in T that are complements of each other. The continuous and
the dotted arrows show two different ways of decomposing n∅.
The arrows point from bigger elements to smaller elements with
respect to the ordering “≺”. If we follow the continuous arrows,
we come across the following cells:

t{1,2}{1,2,3} = n∅, t{1,2}{1,2} = n11 + n12 + n21 + n22, t{1}{1,2}

= n11 + n12,

t{2}{1,2} = n21 + n22, t{1,2}{3} = n13 + n23, t{1}{2}

= n12, t{1}{1} = n11,

t{1}{3} = n13, t{2}{1} = n21, t{2}{2} = n22, t{2}{3} = n23.

The dependencies existent among the above cells are fully char-
acterized in terms of the hierarchical structure induced by the



Preserving confidentiality of high-dimensional tabulated data 367

ordering “≺”:

t{1,2}{1,2} ⊕ t{1,2}{3} = t{1,2}{1,2,3}, t{1}{1,2} ⊕ t{2}{1,2} = t{1,2}{1,2},

t{2}{1} ⊕ t{2}{2} = t{2}{1,2}, t{1}{3} ⊕ t{2}{3} = t{1,2}{3}.

Denote by L(t) and U (t) the current lower and upper bounds
for the “super-cell” t ∈ T. Let L(T) = {L(t) : t ∈ T} and
U (T) = {U (t) : t ∈ T}. If N ⊂ T is the set of cells in x ∈
T(n1, . . . , n p), then L(N ) and U (N ) are the bounds arrays to
be determined. Every t ∈ T has a value V (t) assigned to it. If
t corresponds to an entry in a fixed marginal, we “know” the
value V (t) of that entry, so we set both current bounds of t to
V (t).

Let T0 be the set of cells in T for which the lower bound is
currently equal to the upper bound. If we fix all the cells in N
at a certain value, then all the remaining cells in T will also be
fixed: N ⊂ T0 implies T = T0. Consider M ⊂ T to be the
set of cells in the fixed marginals n1, . . . , n p. When the iterative
procedure described below starts, T0 will contain only the cells
in the fixed marginals, i.e., T0 = M. For the remaining cells in
T, we set L(t) = 0 and U (t) = n∅. Denote by L0(T) and U0(T)
this initial set of upper and lower bounds induced by n1, . . . , n p.

As the algorithm progresses, the current bounds L(T) and
U (T) are improved (lower bounds increase and upper bounds
decrease), and more and more cells are added to T0. When the
bounds associated with t become equal, t is added to T0, and
is assigned value V (t) = L(t) = U (t). We state the bounds
problem in a new equivalent form: Find sharp integer bounds
for the cells in T if the values of some cells T0 ⊂ T are fixed.

Let Q = Q(T) denote the triplets of cells Q(T) =
{(t1, t2, t3) ∈ T × T × T : t1 ⊕ t3 = t2} that represent the cell
dependencies to be satisfied. Let S[L0(T), U0(T)] be the set of
integer tables consistent with L0(T) and U0(T). It is easy to see
that

{V (N ) : V (T) ∈ S[L0(T), U0(T)]} = T(n1, . . . , n p).

To improve the current bounds, we go sequentially through
all dependencies in Q and update upper and lower bounds in the
following way. Consider a triplet (t1, t2, t3) ∈ Q with t1 ≺ t2
and t3 ≺ t2. If t1, t2, t3 ∈ T0, we check whether we came across
an inconsistency. The procedure stops if V (t1) + V (t3) += V (t2).
Assume that t1, t3 ∈ T0, and t2 /∈ T0. Then t2 can only take one
value, namely V (t1) + V (t3). If V (t1) + V (t3) /∈ [L(t2), U (t2)],
we have encountered an inconsistency and stop. Otherwise we
set V (t2) = L(t2) = U (t2) = V (t1) + V (t3), and include t2 in
the set T0 of cells having a fixed value. Similarly, if t1, t2 ∈ T0

and t3 /∈ T0, t3 can only be equal to V (t2) − V (t1). If V (t2) −
V (t1) /∈ [L(t3), U (t3)], we again discovered an inconsistency.
Otherwise, we set V (t3) = L(t3) = U (t3) = V (t2) − V (t1) and
T0 = T0 ∪{t3}. In the case that t2, t3 ∈ T0 and t1 /∈ T0 is handled
analogously.

Now we examine the situation when at least two of the cells
t1, t2, t3 do not have a fixed value. For each cell not having a
fixed value, we update its upper and lower bounds so that the
new bounds satisfy the dependency t1 ⊕ t3 = t2. Suppose that

t1 /∈ T0. If U (t2) − L(t3) < L(t1) or if L(t2) −U (t3) > U (t1), an
inconsistency is detected and the procedure stops. Otherwise, the
updated bounds for t1 will be U (t1) = min{U (t1), U (t2)− L(t3)}
and L(t1) = max{L(t1), L(t2) − U (t3)}. If t3 /∈ T0, we update
L(t3) and U (t3) in the same way. Finally, assume that t2 /∈ T0.
If U (t1) + U (t3) < L(t2) or if L(t1) + L(t3) > U (t2), we stop
the algorithm. Otherwise, we set U (t2) = min{U (t2), U (t1) +
U (t3)} and L(t2) = max{L(t2), L(t1) + L(t3)}. After updating
the bounds of t ∈ T, we check whether the new upper bound
is equal to the new lower bound. If so, we add t to T0 and set
V (t) = L(t) = U (t).

We continue cycling through dependencies in Q until the up-
per bounds no longer decrease, the lower bounds no longer in-
crease and no new cells are added to T0. The algorithm ter-
minates in a finite number of steps: either an inconsistency is
detected or bounds cannot be improved.

If an inconsistency is detected, S[L0(T), U0(T)] is empty and
no bounds are generated. However, S[L0(T), U0(T)] could still
be empty even if the shuttle procedure did not come across any
inconsistencies and has converged to bounds Ls(T) and Us(T).
These two bounds arrays define the same feasible set of ta-
bles as the arrays L0(T) and U0(T) we started with, namely
S[Ls(T), Us(T)] = S[L0(T), U0(T)]. The fact that, for any
t ∈ T, we have L0(t) ≤ Ls(t) ≤ Us(t) ≤ U0(t), could make
one think that S[Ls(T), Us(T)] might be strictly included in
S[L0(T), U0(T)]. Nevertheless, the dependencies in Q(T) im-
ply the equality of the two sets of feasible integer tables (Dobra
2002).

4.1. Convergence properties

The bounds produced by the generalized shuttle algorithm (pro-
vided it did not stop due to an inconsistency) are valid in the
sense that the sharp bounds (over the set of all tables consistent
with the prescribed marginals) for each cell t0 ∈ T lie inside the
interval defined by the shuttle bounds for t0. However, there are
two cases when the shuttle bounds are sharp: dichotomous k-
dimensional tables with all (k −1)-dimensional marginals fixed,
and when fixed the marginals are the minimal sufficient statistics
of a decomposable log-linear model. In both instances, explicit
formulas for the bounds exist, and show next that generalized
shuttle algorithm yields the same result.

4.2. Dichotomous k-way tables with
fixed (k − 1)-way marginals

Consider a k-way table n for which !1 = · · · = !k = {1, 2}.
Collapsing n across categories is equivalent to collapsing across
variables, thus the set T associated with the dichotomous table
n is the set of cells in every marginal of n. Assume that the
(k − 1)-dimensional marginals of n are fixed. Of course, every
lower-dimensional marginal of n is also known. The only cells
in T that are unknown are those in the original table.

The (k − 1)-dimensional marginals of n are the minimal suf-
ficient statistics of the log-linear model of no (k − 1)-order



368 Dobra, Karr and Sanil

interaction. This log-linear model has only one degree of free-
dom because n is dichotomous (Fienberg 1999). Consequently,
we can uniquely express the count in any cell as a function of
one single fixed cell alone—only one more quantity is needed
in order to determine the entries for the full table.

Let c = n(1, . . . , 1). In Proposition 1 (Dobra 2002) we give
an explicit formula for computing the count in an arbitrary cell
based on c and on the set of fixed marginals.

Proposition 1. Consider an index i0 ∈ !. Let {q1, . . . , ql} ⊂
K be such that, for r ∈ K ,

i0
r =

{
1, if r ∈ K \ {q1, . . . , ql},
2, if r ∈ {q1, . . . , ql}.

(1)

For s = 1, . . . , l, let Cs = K \ {qs}. Then

n(i0) = (−1)l · c −
l−1∑

s=0

(−1)l+s · nC(l−s)

(
1, . . . ,1, i0

q(l−s)+1, . . . , i0
k

)
.

(2)

Let nC be the sub-table corresponding to the index set C .
(Typically, C is a clique in the graph.)

The upper and lower bounds can therefore be obtained by im-
posing the non-negativity constraints n(i0) ≥ 0, i0 ∈ !, in these
relations. For example, the sharp lower bound for n(1, . . . , 1) is

max

{
l−1∑

s=0

(−1)s · nC(l−s)

(
1, . . . , 1, i0

q(l−s)+1, . . . , i0
k

)
: l even

}

, (3)

where i0 is as in (1), and the corresponding upper bound is given
by

min

{
l−1∑

s=0

(−1)s · nC(l−s)

(
1, . . . , 1, i0

q(l−s)+1, . . . , i0
k

)
: l odd

}

. (4)

The generalized shuttle algorithm converges to the bounds in
(3) and (4) (Dobra 2002). Moreover, one can obtain all feasible
tables consistent with the (k −1)-dimensional marginals of n by
replacing every possible value c that the cell (1, 1, . . . , 1) can
take in (2) applied for all cells i0. In particular, all the cells in
n can take the same number of values—the difference between
the upper and lower bounds is constant for all cells, and is equal
with the number of feasible integer tables consistent with the
(k − 1)-dimensional marginals of n.

4.3. The decomposable case

Log-linear models are a common way of representing and study-
ing contingency tables with fixed marginals. In particular, a
graphical log-linear model corresponds to conditional indepen-
dence relationships that can be summarized by means of an
independence graph (Madigan and York 1995). Decomposable
log-linear models (Lauritzen 1996) are a sub-class of graphi-
cal models with closed form structure and special properties
that lead to explicit formulas for computing bounds (Dobra and

Fienberg 2000). The complete proof of the next theorem appears
in Dobra (2002).

Theorem 1. Let C1, . . . , C p be index sets corresponding to
the minimal sufficient statistics of a decomposable log-linear
model, let n j = nC j be consistent tables indexed by the C j , and
let S2, . . . , Sp be the associated set of separators in the decom-
posable independence graph with cliques C1, . . . , C p. Then:

(i) T(n1, . . . , n p) contains at least one table.
(ii) The sharp upper bound for cell i given n1, . . . , n p is

U (i ; T(n1, . . . , n p)) = min
{
n j

(
iC j

)
: j = 1, . . . , p

}
.

(iii) The sharp lower bound for cell i given n1, . . . , n p is
L(i ; T(n1, . . . , n p))

= max

{
p∑

j=1

n j
(
iC j

)
−

p∑

j=2

(n j )Sj

(
iS j

)
, 0

}

.

Therefore, when the fixed marginals define a decomposable
graphical model, pairwise consistency of marginals implies the
existence of a feasible table.

4.4. Finding a feasible integer table

As noted above, the generalized shuttle algorithm can converge
to bounds Ls(T) and Us(T) even if there does not exist an inte-
ger table consistent with the fixed marginals n1, . . . , n p. Since
bounds make no sense when no table exists, we augment our
procedure by proposing a method that will actually determine a
feasible table in T(n1, . . . , n p), provided one exists.

This is done by sequentially choosing possible values for cells
inN . Once a new cell has been fixed, bounds for all the cells in T
are updated using the shuttle algorithm. If the shuttle procedure
did not stop because of an inconsistency, we pick a value for
another cell. Otherwise, we choose a new value for the cell fixed
at the current step. If all the cells in N have been fixed and the
shuttle procedure completed successfully, which indicates that
the dependencies in Q(T) are satisfied, we have determined a
table in T(n1, . . . , n p). We denote by T (0)

0 = T0 the set of cells
fixed by the shuttle procedure when computing the bounds Ls(T)
and Us(T). Also, initialize the bounds arrays L (0)(T) = Ls(T)
and U (0)(T) = Us(T). Here is the procedure in pseudo-code:

Step 1. Set l = 1.
Step 2. Check whether N l = N ∪ (T \ T(l−1)

0 ) is empty. If so, a
feasible table has been determined; stop the algorithm.

Step 3. Select a cell t l ∈ N l .
Step 4. FOR every integer vl ∈ [L (l−1)(tl), U (l−1)(tl)] DO

• Initialize new bound arrays L (l)(T) = L (l−1)(T) and
U (l)(T) = U (l−1)(T).

• Set V (tl) = L (l)(tl) = U (l)(tl) = vl and put T(l) =
T(l−1) ∪ {tl}.

• Run the generalized shuttle algorithm to update
L (l)(T), U (l)(T) and T(l).



Preserving confidentiality of high-dimensional tabulated data 369

Table 1. A 2 × 2 × 2 × 2 table (left-hand panel) and the real (not necessarily integer) bounds computed using linear programming (right-hand
panel)

no yes no yes

A B
C
D no yes no yes

C
D no yes no yes

no no 1 0 0 1 [0, 1] [0, 0.67] [0, 1.67] [0, 1]
yes 0 0 1 0 [0, 0.67] [0, 0.67] [0, 1] [0, 0.67]

yes no 0 0 1 0 [0, 0.67] [0, 0.67] [0, 1] [0, 0.67]
yes 0 1 0 0 [0, 0.67] [0, 1] [0, 0.67] [0, 0.67]

• If the generalized shuttle algorithm did not stop be-
cause of an inconsistency, set l = l + 1 and go to
Step 2.

END FOR.

Step 5. The algorithm stops; there does not exist a feasible integer
table in T(n1, . . . , n p).

Instead of “blindly” searching the entire space of possible
combinations of values for the cells in N defined by the bounds
arrays Ls(N ) and Us(N ), the procedure reduces the search space
continually as the algorithm progresses because the bounds are
updated at each step. Several heuristics exist for substantially
increasing the speed of this search procedure (Dobra 2002).
Moreover, if we do not stop the algorithm at Step 2 once the
first feasible table is generated, then all the integer tables in
T(n1, . . . , n p) will be identified.

4.5. Calculating sharp bounds

We can now obtain sharp bounds for any cell t0 ∈ T . Let Ls(T)
and Us(T) be the bounds produced by the generalized shuttle
algorithm. Then

Ls(t0) ≤ Lt0 ≤ Ut0 ≤ Us(t0).

We need to “adjust” Ls(t0) and Us(t0) to the sharp bounds Lt0
and Ut0 by making use of the simple fact that, for any integer v ∈
[Ls(t0), Lt0 ) ∪ (Ut0 , Us(t0)], there does not exist an integer array
V (T) ∈ S[Ls(T), Us(T)] such that V (t0) = v. To determine
Lt0 , we start with v = Ls(t0) and attempt to determine an array
V (T) ∈ S[Ls(T), Us(T)] with V (t0) = v. If such an array exists,
Lt0 = v. Otherwise, we do the same thing for v = Ls(t0)+1, and
so on. Here is the complete algorithm in pseudo-code. (Again,
T0 represents the cells t with Ls(t) = Us(t).)

FOR every integer value vl ∈ [Ls(t0), Ls(t0) + 1, . . . , Us(t0)]
DO
• Initialize new bound arrays Lv(T) = Ls(T) and U v(T) =

Us(T).
• Set V (t0) = Lv(t0) = U v(t0) = v and set Tv = T0 ∪ {t0}.
• Run the generalized shuttle algorithm to update Lv(t0),

U v(t0) and Tv .
• Using the procedure described in the previous section, find

out whether S[Lv(t0), U v(t0)] is empty.

• If S[Lv(t0), U v(t0)] is not empty, set Lt0 = v and stop the
algorithm.

END FOR

Determination of Ut0 is similar: start with v = Us(t0) and
attempt to determine an array V (T) ∈ S[Ls(T), Us(T)] with
V (t0) = v. If such an array exists, Ut0 is equal to v; otherwise,
we set v = Us(t0)−1 and continue. In this way, we obtain sharp
bounds not only for the cells in N but also for any cell in a
cross-classification obtained by collapsing n across categories.

Example 2. The left-hand panel of Table 1 contains a 2 × 2 ×
2 × 2 contingency table. The generalized shuttle algorithm was
used to compute the upper and lower bounds induced by fixing
the 6 two-way marginals of this table. There is only one table
consistent with this set of two-way marginals, so for all the cells
in this table, the sharp integer upper and lower bounds are equal
to the actual cell entries. Of course, only rarely is it known that
there is only one such table.

The right panel in Table 1 contains comparable bounds com-
pute using linear programming (specifically, the simplex algo-
rithm), which is commonly applied to calculate bounds on table
entries. For all cells, one of the bounds is different from the
corresponding sharp integer bound. In some cases, the simplex
algorithm produced fractional bounds. In other cases, although
simplex converged to integer bounds, these bounds are not sharp.
Especially, cell (1, 1, 2, 1), marked with a box in Table 1, con-
tains a count of 0, while the actual upper bound is 1.67. There-
fore the distance between the integer and the real bounds can be
strictly greater than 1.

Adjusting the bounds can be done in parallel for all the cells
in the table (Dobra 2002). Other methods for reducing the com-
putational effort required by the generalized shuttle algorithm in
the case of large sparse multi-way tables, as well as an example
of calculating bounds in parallel for a 216, table are presented in
Dobra (2002).

5. Conclusions

In this paper we have outlined how to deal with the challeng-
ing issues associated with storing and manipulating large, sparse



370 Dobra, Karr and Sanil

tables in the context of statistical disclosure limitation. Dissemi-
nation systems and software implementing these techniques are
described in Dobra et al. (2002) and Karr, Dobra and Sanil
(2003). To the extent that they exploit sparsity, these techniques
exhibit strong scalability properties. For instance, the fundamen-
tal data structures and methods for calculating marginal sub-
tables seem able to handle almost any table that is likely to arise
in practice. By contrast, the generalized shuttle algorithm of
Section 4, in its current form, entails computations for every
cell in the underlying table, and consequently does not scale
well. Deriving a scalable version is just one of many research
challenges that remain.

The generalized shuttle algorithm can compute the bounds
induced by an arbitrary set of marginal totals. This procedure
performs well if the set of tables consistent with the fixed margi-
nals is relatively small. Moreover, one can modify the general-
ized shuttle algorithm to obtain a procedure for enumerating all
tables consistent with the prescribed marginals, and thereby ex-
plore the space induced by any configuration of fixed marginals.
It can also be shown that the generalized shuttle algorithm can be
used to construct a controlled rounding of a table of counts hav-
ing a set of fixed marginals (Dobra 2002); a heuristic algorithm
for minimizing the loss of information is discussed in Dobra
(2002). Finally, the shuttle algorithm computes bounds not only
for the cells in the original table, but also for all the cells in
cross-classifications derived by table re-design. Consequently, it
is possible to make use of the shuttle algorithm to re-design a
table in an optimal way according to some data utility criteria.

The generalized shuttle algorithm can also be employed as an
alternative to existing algorithms for suppressing cell entries in
tables of arbitrary dimensions, which we plan to explore in the
near future. Another possible application of the generalized shut-
tle algorithm is tables containing missing counts and/or struc-
tural zeroes. Because we have identified the complete hierarchi-
cal configuration of a multi-dimensional array represented by a
table of counts and because the shuttle procedure is intimately
linked with this special data structure, the methods described
in Section 4 perform equally well without further adjustments
even when there is not information on some cell counts.

Acknowledgments

Support for the research was provided by National Science Foun-
dation grant EIA-9876619 to NISS. The authors thank Stephen
E. Fienberg and Stephen F. Roehrig for suggestions, comments
and useful discussions. The example in Table 1 was suggested
by Bernd Sturmfels.

Note

1. A generalized coordinate is essentially a length-k array of integers. We refer
the reader to (Cormen, Leiserson and Rivest 1990) or any textbook on data

structures for examples of hash functions for array-valued keys, since a dis-
cussion of even the simplest hash functions involves technical notions such
as collisions and chaining.

References

Bishop Y.M.M., Fienberg S.E., and Holland P.W. 1975. Discrete Mul-
tivariate Analyses: Theory and Practice. MIT Press, Cambridge,
MA.

Buzzigoli L. and Giusti A. 1999. An algorithm to calculate the lower and
upper bounds of the elements of an array given its marginals. In:
Statistical Data Protection (SDP’98) Proceedings, Luxembourg,
Eurostat. pp. 131–147.

Cormen T.H., Leiserson C.E., and Rivest R.L. 1990. Introduction to
Algorithms. MIT Press/McGraw-Hill.

Dobra A. 2002. Statistical Tools for Disclosure Limitation in Multi-
way Contingency Tables. PhD thesis, Department of Statistics,
Carnegie Mellon University.

Dobra A. and Fienberg S. E. 2000. Bounds for cell entries in contingency
tables given marginal totals and decomposable graphs. Proc. Nat.
Acad. Sciences 97: 11885–11892.

Dobra A. and Fienberg S.E. 2001. Bounds for cell entries in contin-
gency tables induced by fixed marginal totals with applications
to disclosure limitation. Statist. J. United Nations ECE 18:363–
371, 2001. Presented at the 2nd Joint ECE/Eurostat Work Ses-
sion on Statistical Data Confidentiality, 14–16 March, Skopje,
Macedonia.

Dobra A., Karr A.F., Fienberg S.E., and Sanil A.P. 2002. Software
systems for tabular data releases. Int. J. Uncertainty, Fuzziness
and Knowledge Based Systems 10(5): 529–544.

Fienberg S.E. 1999. Fréchet and bonferroni bounds for multi-way tables
of counts with applications to dis-closure limitation. In: Statistical
Data Protection (SDP’98) Proceedings, Luxembourg, Eurostat.
pp. 115–129.

Harinarayan V., Rajaraman A., and Ullman, J.D. 1996. Implementing
data cubes efficiently. In: Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data, Vol. 25(2) of ACM
SIGMOD Record, June 4–6, ACM Press, New York, pp. 205–
216.

Karr A.F., Dobra A., and Sanil A.P. 2003. Table servers protect confi-
dentiality in tabular data releases. Comm. ACM 46(1): 57–58.

Knuth D.E. 1997. Fundamental Algorithms, Vol. 1 of The Art of
Computer Programming, 3rd edn. Addison-Wesley, Reading,
Massachusetts.

Lauritzen S.L. 1996. Graphical Models. Clarendon Press, Oxford, UK.
Madigan D. and York J. 1995. Bayesian graphical models for discrete

data. Internat. Statis. Rev. 63: 215–232.
Moore A.W. and Lee M.S. 1998. Cached sufficient statistics for efficient

machine learning with large datasets. J. Artificial Intell. Res. 8:
67–91.

Bjarne Stroustrup. 1997. The C++ Programming Language, 3rd edn.
Addison-Wesley, Reading, MA.

Sun Microsystems. Java programming language. http://java.sun.com,
2002.

Willenborg L.C.R.J. and de Waal T. 2001. Elements of Statistical Dis-
closure Control. Springer-Verlag, New York.


